VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
12th Edition
ISBN: 9781260265453
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.1, Problem 12.2P
The value of g at any latitude ϕ may be obtained from the formula
which takes into account the effect of the rotation of the earth, as well as the fact that the earth is not truly spherical. Knowing that the weight of a silver bar has been officially designated as 5 lb, determine to four significant figures (a) the mass in slugs, (b) the weight in pounds at latitudes of 0°, 30°, and 50°.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
CENTROIDS AND CENTERS OF GRAVITY Application to Surface Area and Volume Make a table for how many sections and corresponding x and y
At 45° latitude, the gravitational acceleration as a function of elevation z
above sea level is given by g=a-bz where a=9.807 ms ² and b=3.32×10 6
s ². Determine the height above sea level where the weight of an object will
decrease by 1 percent. Answer (29539 m)
The sea-level value for the acceleration of gravity at 45 deg latitude is:
9.81 m/s².
O 9.8 ft/s².
O 32.2 ft/s.
O 32.2 m/s².
Chapter 12 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. The weight of a body is 100 lbm. Determine the following: a. Its weight in Newtons (N); b. Its mass in kilograms (kg); and c. The rate of acceleration in SI and English units if a net force of 50 lb; is applied to the body.arrow_forward4. The value of the gravitational acceleration g decreases with elevation from 9.807 m/s? at sea level to 9.767 m/s² at an altitude of 13,000 m, where large passenger planes cruise. Determine the percent reduction in the weight of an airplane cruising at 13,000 m relative to its weight at sea level.arrow_forwardPROBLEM 2.5 A car moving at 80 km/h comes to a stop in 6.0 s. What was its average deceleration? 5. c. 1.45 m/s2 d. 3.70 m/s² а. 2.40 m/s² b. 4.21 m/s²arrow_forward
- For the 3500-lb car, determine (a) its mass in slugs, (b) its weight in newtons, and (c) its mass in kg. slug = lb-/ftarrow_forwardA force F = (8.05î - 3.35t j) N, with t in units of s, is applied to a 2.00 kg object initially at rest. (a) At what time (in s) will the object be moving with a speed of 15.0 m/s? (Round your answer to at least two decimal places.) (b) How far (in m) is the object from its initial position when its speed is 15.0 m/s? (c) What is the total displacement (in m) through which the object traveled at this time? (Express your answer in vector form.)arrow_forwardThe sea level value for the acceleration of gravity at 45° latitude in SI units is: 9.81 m/s². 32.2 m/s². O 32.2 ft/s². 9.81 ft/s².arrow_forward
- A person weighs 30 lb on the moon, where g = 32 ft/s2.Determine (a) the mass of the person; and (b) the weight of the person on earth. Convert the following: (a) 400 lb ft to kN • m; (b) 6 m/s to mi/h;(c) 20 lb/in.2 to kPa; and (d) 500 slug/in. to kg/m. The kinetic energy of a car of mass, m moving with velocity v is E = mv2/2. If m = 1000 kg and v = 6 m/s, compute E in (a) kN · m; and (b) lb ft. A differential equation is d^2/dt^2=Ay^2=byt where y represents a distance and 1 is time. Determine the dimensions of constants A and B for which the equation will be dimensionally homogeneous. Calculate the gravitational force between the earth and the moon in newtons. The distance between the earth and the moon is 384 x 103 Note: mass of earth = 5.9742 X 1024 kg, radius of earth = 6378 km, mass of moon = 0.073 483 x 1024 kg, radius of moon = 1737 km.arrow_forwardUnits and dimensions (Activity 1) 1. A person weighs 150N on the moon, where g=1.64m/ s2. Determine (a) the mass of the person and (b) the weight of the person on earth. 2. Convert the following: (a) 40,000 N-cm to kN-m (b) 6 m/s to mm/hr (c) 1 bar (105 Pa) to kPa and (d) 500 g/mm to kg/m. 3. The mass moment of inertia of a certain body is | = 1035285.8 g-mm2. Express I in kg-m2 up to 4 significant digits.arrow_forwardA particle of mass 0.01 kg is traveling at a speed of 15.5 m.s¹ at an angle of 1.8 radians from the i vector (toward j). A force of 0.02e-0.02t N is applied to the particle at an angle of 3.4 radians from i. Answer all questions to at least 3 significant figures. Enter your numerical answers in SI units but do not enter the units. Determine the j component of the initial velocity [m.s¹] Determine the force in the i direction at t=3.8s [N] What is the i component of velocity at t-3.8s? [m.s¹]arrow_forward
- RAIL LINES CROSS COUNTRY MOVERS OO 00 theta A 13,129-lb truck enters an emergency exit ramp at a speed of 112.4 ft/s. It travels for 7.9 s before its speed is reduced to 24.5 ft/s. Determine the braking force by the truck if the acceleration is constant. (Use Impulse-Momentum concepts.) Assume theta = 21.4 degrees Calculate your answer to two decimal places. Report your answer in pounds of force (lbf).arrow_forwardAs shown in the figure below, two objects are moving towards each other with velocities given by the vectors V1 and V2 on a frictionless surface. They collide perfectly inelastically and then move together as indicated by the vector V3. If the masses m1 = 1.8 m2 what is the magnitude of Va in m/s ? Provide your answer with 2 decimal places. e1 = 30.5 degree e2 = 19.2 degree V3 - 8.8 m/s m2 m1 V V2 01 02arrow_forwardA ball is shot vertically into the air at a velocity of 57 m/s. After 6 seconds, another ball is shot vertically into the air. If the balls meet 125 m from the ground, determine the relative position (in m)of the first ball to the second ball 9 seconds after the first ball was shot into the air. Use 9.81 m/s² for the acceleration due to gravity. Round off your final answer to five decimal places. Add your answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Work, Energy, and Power: Crash Course Physics #9; Author: CrashCourse;https://www.youtube.com/watch?v=w4QFJb9a8vo;License: Standard YouTube License, CC-BY
Different Forms Of Energy | Physics; Author: Manocha Academy;https://www.youtube.com/watch?v=XiNx7YBnM-s;License: Standard Youtube License