Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 9PCE
Repeat the previous problem, this time finding the magnitude and direction of the net force acting on the Sun. Give the direction relative to the line connecting the Sun and the Moon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A planet with mass of 7.50 x 1024) and Jupiter (m = 1.901 x 1027) are attracted to each
other. However, they are in a long-distance relationship, being separated by a distance
of 4.09 x 1014 meters. Calculate the force of attraction between these two planets. (Iwant
to see the set-up of the equation. You can attach a picture and upload it)
Sphere A with mass 89 kg is located at the origin of an xy coordinate system; sphere B with mass 58 kg is located at coordinates (0.23 m, 0); sphere C with mass 0.12 kg is located at coordinates (0.14 m, 0.14 m). In unit-vector notation, what is the gravitational force on C due to A and B?
Sphere A with mass 80 kg is located at the origin of an xy coordinate system; sphere B with mass 60 kg is located at coordinates (0.25 m, 0); sphere C with mass 0.20 kg is located in the first quadrant 0.20 m from A and 0.15 m from B. In unit-vector notation, what is the gravitational force on Cdue to AandB?
Chapter 12 Solutions
Physics (5th Edition)
Ch. 12.1 - Rank the four systems shown in Figure 12-6 in...Ch. 12.2 - Suppose the Sun suddenly collapsed to half its...Ch. 12.3 - Satellite A orbits the Earth at the radius r,...Ch. 12.4 - Prob. 4EYUCh. 12.5 - Prob. 5EYUCh. 12.6 - If the radius of the Moons orbit around the Earth...Ch. 12 - It is often said that astronauts in orbit...Ch. 12 - When a person passes you on the street, you do not...Ch. 12 - Imagine bringing the tips of your index fingers...Ch. 12 - Does the radius vector of Mars sweep out the same...
Ch. 12 - When a communications satellite is placed in a...Ch. 12 - The Mass of Pluto On June 22, 1978, James Christy...Ch. 12 - Rockets are launched into space from Cape...Ch. 12 - One day in the future you may take a pleasure...Ch. 12 - Apollo astronauts orbiting the Moon at low...Ch. 12 - Prob. 10CQCh. 12 - The force exerted by the Sun on the Moon is more...Ch. 12 - Prob. 12CQCh. 12 - System A has masses m and m separated by a...Ch. 12 - A 6.3-kg bowling ball and a 7.1-kg bowling ball...Ch. 12 - A communications satellite with a mass of 520 kg...Ch. 12 - The Attraction of Ceres Ceres, the largest...Ch. 12 - In one hand you hold a 0.13-kg apple, in the other...Ch. 12 - Predict/Calculate A spaceship of mass m travels...Ch. 12 - At new moon, the Earth, Moon, and Sun are in a...Ch. 12 - When the Earth, Moon, and Sun form a right...Ch. 12 - Repeat the previous problem, this time finding the...Ch. 12 - Predict/Calculate Three 7.25-kg masses are at the...Ch. 12 - Predict/Calculate Four masses are positioned at...Ch. 12 - Suppose that three astronomical objects (1, 2, and...Ch. 12 - Find the acceleration due to gravity on the...Ch. 12 - At what altitude above the Earths surface is the...Ch. 12 - Two 6.4-kg bowling balls, each with a radius of...Ch. 12 - What is the acceleration due to Earths gravity at...Ch. 12 - Extrasolar Planet Gravity Kepler-62e is an...Ch. 12 - Predict/Calculate At a certain distance from the...Ch. 12 - The acceleration due to gravity on the Moons...Ch. 12 - Gravitational Tug of War At some point along the...Ch. 12 - Predict/Calculate An Extraterrestrial Volcano...Ch. 12 - Consider an asteroid with a radius of 19 km and a...Ch. 12 - Prob. 23PCECh. 12 - Predict/Explain The Earth-Moon Distance Is...Ch. 12 - Apollo Missions On Apollo missions to the Moon,...Ch. 12 - Prob. 26PCECh. 12 - An Extrasolar Planet In July of 1999 a planet was...Ch. 12 - Phobos, one of the moons of Mars, orbits at a...Ch. 12 - Predict/Calculate An Asteroid with Its Own Moon...Ch. 12 - GPS Satellites GPS (Global Positioning System)...Ch. 12 - Predict/Calculate Two satellites orbit the Earth,...Ch. 12 - Predict/Calculate Satellite A has a mass of 1000...Ch. 12 - Predict/Calculate The Martian moon Deimos has an...Ch. 12 - Predict/Calculate (a) Calculate the orbital period...Ch. 12 - Binary Stars Alpha Centauri A and Alpha Centauri B...Ch. 12 - Prob. 36PCECh. 12 - How much gravitational potential energy is...Ch. 12 - Predict/Explain (a) Is the amount of energy...Ch. 12 - Prob. 39PCECh. 12 - Calculate the gravitational potential energy of a...Ch. 12 - Prob. 41PCECh. 12 - Two 0.59-kg basketballs, each with a radius of 12...Ch. 12 - Find the minimum kinetic energy needed for a...Ch. 12 - Predict/Explain Suppose the Earth were to suddenly...Ch. 12 - Prob. 45PCECh. 12 - Prob. 46PCECh. 12 - Meteorites from Mars Several meteorites found in...Ch. 12 - What is the launch speed of a projectile that...Ch. 12 - A projectile launched vertically from the surface...Ch. 12 - Prob. 50PCECh. 12 - Predict/Calculate Halleys Comet Halleys comet,...Ch. 12 - The End of the Lunar Module On Apollo Moon...Ch. 12 - Prob. 53PCECh. 12 - Prob. 54PCECh. 12 - A projectile is launched vertically from the...Ch. 12 - Prob. 56PCECh. 12 - Predict/Calculate Two baseballs, each with a mass...Ch. 12 - On Earth, a person can jump vertically and rise to...Ch. 12 - The magnitude of the tidal force exerted on a...Ch. 12 - The magnitude of the tidal force between the...Ch. 12 - A dumbbell has a mass m on either end of a rod of...Ch. 12 - Prob. 62PCECh. 12 - CE You weigh yourself on a scale inside an...Ch. 12 - Figure 12-37 Problems 64 and 65 64. CE Rank...Ch. 12 - CE Referring to Figure 12-37, rank objects A, B,...Ch. 12 - CE The Crash of Skylab Skylab, the largest...Ch. 12 - Consider a system consisting of three masses on...Ch. 12 - An astronaut exploring a distant solar system...Ch. 12 - Predict/Calculate When the Moon is in its...Ch. 12 - Prob. 70GPCh. 12 - Suppose that each of the three masses in Figure...Ch. 12 - A Near Miss! In the early morning hours of June...Ch. 12 - Predict/Calculate Suppose a planet is discovered...Ch. 12 - Prob. 74GPCh. 12 - Walking into Orbit A spherical asteroid of average...Ch. 12 - Prob. 76GPCh. 12 - Find the orbital period of the binary star system...Ch. 12 - Exploring Mars In the not-too-distant future...Ch. 12 - Comet Wild 2 In 2004, a NASA spacecraft named...Ch. 12 - Predict/Calculate (a) If you want to launch a...Ch. 12 - Predict/Calculate A satellite is placed in Earth...Ch. 12 - Show that the force of gravity between the Moon...Ch. 12 - The astronomical unit AU is defined as the mean...Ch. 12 - Prob. 84GPCh. 12 - Predict/Calculate Space Station Orbit The...Ch. 12 - Approaching the ISS A Russian Soyuz module, with...Ch. 12 - Prob. 87GPCh. 12 - Prob. 88GPCh. 12 - Three identical stars, at the vertices of an...Ch. 12 - Prob. 90GPCh. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - Predict/Calculate Referring to Example 12-8...Ch. 12 - Predict/Calculate Referring to Example 12-17 (a)...Ch. 12 - Predict/Calculate Referring to Example 12-17...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. (II) A 1200-N crate rests on the floor. How much work is required to move it at constant speed (a) 5.0 m alo...
Physics: Principles with Applications
A solid sphere contains a uniform volume charge density. What fraction of the total electrostatic energy of thi...
Essential University Physics: Volume 2 (3rd Edition)
Two mirrors are oriented at right angles. A narrow light beam strikes the horizontal mirror at an incident angl...
College Physics
3. The lateral surface area of a solid is
always equal to total surface area.
never equal to total surface area...
Applied Physics (11th Edition)
12. Which “feels” a greater pull due to gravity, a heavy object or a light object? So why do heavy objects not ...
College Physics (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardThree equal masses are located on a coordinate grid so that the masses and the origin form a square with side length , as shown in the figure. Find the magnitude and direction of the gravitational field at the origin due to these masses. Find the magnitude of the gravitational field at the origin due to these masses. (Use the following as necessary: m, l, and G.) 9 = Find the direction of the gravitational field. (Give your answer in degrees counterclockwise from the +x-axis.) counterclockwise from the +x-axis Need Help? Read Itarrow_forward
- In this problem we are going to compare the strength of the gravitational interaction between the Moon and the Earth and the Sun and the Earth. We will do this by finding the gravitational field g due to the Moon or the Sun, which is the acceleration that the Earth would have if it were interacting with each of them. For reference, the Moon has a mass of 7.34 × 1022 kilograms and is located 3.84 × 105 kilometers away from the Earth. The Sun, meanwhile, has a mass of 1.99 × 1030 kilograms and is located 1.49 × 108 kilometers away from the Earth. Calculate the magnitude of the gravitational field of the Sun at the location of Earth, in meters per square second. gS = Calculate the magnitude of the gravitational field of the moon at the location of Earth, in meters per square second. gM = Calculate the ratio of the gravitational field of the Sun to the gravitational field of the Moon, at the location of…arrow_forwardFive small spheres each with a mass of 48 kg are attached to the vertices of a pentagon. A set of coordinate axes are chosen such that the pentagon lies in the x,y plane with the origin at the center of the pentagon, and one of the spheres is located along the x axis 8 meters from the origin. See figure below. Find the z component of the gravitational field due to these five point masses at a point P on the z axis a distance 6 meters from the origin. Use G = 6.673E-11 N m2/kg2.arrow_forwardLet ΔgM represent the difference in the gravitational fields produced by the Moon at the points on the Earth’s surface nearest to and farthest from the Moon. Find the fraction ΔgM/g, where g is the Earth’s gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forward
- Three equal masses are located on a coordinate grid so that the masses and the origin form a square with side length e, as shown in the figure. Find the magnitude and direction of the gravitational field at the origin due to these masses. Find the magnitude of the gravitational field at the origin due to these masses. (Use the following as necessary: m, e, and G.) g = Find the direction of the gravitational field. (Give your answer in degrees counterclockwise from the +x-axis.) o counterclockwise from the +x-axisarrow_forwardIn this problem we are going to compare the strength of the gravitational interaction between the Moon and the Earth and the Sun and the Earth. We will do this by finding the gravitational field g due to the Moon or the Sun, which is the acceleration that the Earth would have if it were interacting with each of them. a) Calculate the magnitude of the gravitational field of the moon at the location of Earth, in meters per square second. b)Calculate the magnitude of the gravitational field of the Sun at the location of Earth, in meters per square second. c)Calculate the ratio of the gravitational field of the Sun to the gravitational field of the Moon, at the location of Earth.arrow_forwardThree equal masses are located on a coordinate grid so that the masses and the origin form a square with side length e, as shown in the figure. Find the magnitude and direction of the gravitational field at the origin due to these masses. Find the magnitude of the gravitational field at the origin due to these masses. (Use the following as necessary: m, t, and G.) g= Find the direction of the gravitational field. (Give your answer in degrees counterclockwise from the +x-axis.) 1° counterclockwise from the +x-axis Need Help? Read Itarrow_forward
- The center of a moon of mass m is a distance D from the center of a planet of mass M. At some distance x from the center of the planet, along a line connecting the centers of planet and moon, the net force on an object will be zero. Derive an expression for x.arrow_forwardProblem is on attached image.arrow_forwardIn a total solar eclipse, it is possible for the moon to momentarily cover the sun for an observer on the Earth's surface since: a) the angle that covers the diameter of the moon is the same that covers the diameter of the sun during the eclipse. b) the tangential acceleration of the moon and the sun is the same while the eclipse occurs. c) the length of the arcs corresponding to the diameters of the sun and the moon are equal during the eclipse. d) the angular speed of the moon and the sun is equal while the eclipse occurs.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY