![Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term](https://www.bartleby.com/isbn_cover_images/9781133422013/9781133422013_largeCoverImage.gif)
Concept explainers
(a)
The expression for the position of the particle as a function of time.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 9P
The expression for the position of the particle as a function of time is
Explanation of Solution
Given information:
The amplitude of the motion of the particle is
The expression for the position of the particle for
The formula to calculate angular frequency is,
Substitute
For
Substitute
Conclusion:
Therefore, the expression for the position of the particle as a function of time is
(b)
The maximum speed of the particle.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 9P
The maximum speed of the particle is
Explanation of Solution
Given information:
The amplitude of the motion of the particle is
The formula to calculate maximum velocity is,
Substitute
Conclusion:
Therefore, the maximum speed of the particle is
(c)
The earliest time at which the particle has
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 9P
The earliest time at which the particle has
Explanation of Solution
Given information:
The amplitude of the motion of the particle is
The expression for velocity is,
Substitute
Substitute
Conclusion:
Therefore, the earliest time at which the particle has
(d)
The maximum positive acceleration of the particle.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 9P
The maximum positive acceleration of the particle is
Explanation of Solution
Given information:
The amplitude of the motion of the particle is
The expression for acceleration is,
Substitute
Conclusion:
Therefore, the maximum positive acceleration of the particle is
(e)
The earliest time at which the particle has
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 9P
The earliest time at which the particle has
Explanation of Solution
Given information:
The amplitude of the motion of the particle is
The expression for velocity is,
Substitute
Substitute
Conclusion:
Therefore, the earliest time at which the particle has
(f)
The total distance traveled by the particle between
(f)
![Check Mark](/static/check-mark.png)
Answer to Problem 9P
The total distance traveled by the particle between
Explanation of Solution
Section 1;
To determine: The time period of the particle.
Answer: The time period of the particle is
Given information:
The amplitude of the motion of the particle is
The time period of the particle is,
Substitute
Section 2;
To determine: The number of time period of the particle.
Answer: The number of time period of the particle is
Given information:
The amplitude of the motion of the particle is
The number of time periods is calculated as,
This number of the periods shows that it completes one and half cycle approximately.
Section 3;
To determine: The total distance traveled by the particle between
Answer: The total distance traveled by the particle between
Given information:
The amplitude of the motion of the particle is
For one and half cycle the total distance is given as,
Substitute
Conclusion:
Therefore, the total distance traveled by the particle between
Want to see more full solutions like this?
Chapter 12 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- 7. A race car accelerates from rest to 55 m s-1 in 5.0 seconds. The acceleration of the car Is m s-² 8. An object's speed increases uniformly from 10.5 km per hour to 99.8 km per hour in 2.41 seconds. Calculate the acceleration in m s-2 and express your answer to three significant figures. 9. The acceleration-time graph of a car is shown below. The initial speed of the car is 5.0 m s-1. # Acceleration (ms) 12 8.0- 4.0- 2.0 4.0 6.0 Time (s) Calculate the velocity of the car at t = 4.0 s. 3arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- Problem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° horizon. above the 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Please view both photos, and answer the question correctly please. Thank you!!arrow_forwardA thrown brick hits a window, but doesn't break it. Instead it reverses direction and ends down on the ground below the window. Since the brick didn't break the glass, we know: О The force of the brick on the glass > the force of the glass on the brick. О The force of the brick on the glass the force of the glass on the brick. = О The force of the brick on the glass < the force of the glass on the brick. О The brick didn't slow down as it broke the glass.arrow_forwardAlexandra (wearing rubber boots for traction) is attempting to drag her 32.6-kg Golden Retriever across the smooth ice by applying a horizontal force. What force must she apply to move the dog with a constant speed of 0.950 m/s? ☐ 31.0 lb. ☐ 319 kg. ○ Zero. 32.6 kg.arrow_forward
- The figure shows a graph of the acceleration of an object as a function of the net force acting on it. The mass of this object, in grams, is closest to 11 a(m/s²) 8.0+ 6.0- 4.0- 2.0- 0+ F(N) 0.00 0.50 1.00 ☐ 130 ○ 8000 ☐ 89arrow_forwardValues that are within standard deviations represent measurements that are considered to be near the true value. Review the data from the lab and determine whether your data is within standard deviations. Report, using numerical values, whether your data for each angle is within standard deviations. An acceptable margin of error typically falls between 4% and 8% at the 95% confidence level. Review your data for each angle to determine whether the margin of error is within an acceptable range. Report with numerical values, whether your data for each angle is within an acceptable margin of error. Can you help explain what my data means in terms of the standard deviation and the ME? Thanks!arrow_forwardA sinusoidal wave is propagating along a stretched string that lies along the x-axis. The displacement of the string as a function of time is graphed in (Figure 1) for particles at x = 0 and at x = 0.0900 m. You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. If instead the wave is moving in the -x-direction, determine the wavelength. Please show all stepsarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)