
Concept explainers
(a)
The new amplitude of the vibration system after collision.
(a)

Answer to Problem 63P
The new amplitude of the vibration system after collision is
Explanation of Solution
Section 1:
To determine: The angular frequency of the system.
Answer: The angular frequency of the system is
Given information: The mass of the particle is
The formula for the angular frequency is,
Substitute
Section 2:
To determine: The maximum speed of the system.
Answer: The maximum speed of the system is
Given information: The mass of the particle is
The formula to calculate maximum speed is,
Substitute
Section 3:
To determine: The speed of the system when the objects stick together after the collision.
Answer: The speed of the system when the objects stick together after the collision is
Given information: The mass of the particle is
The formula to calculate speed after the collision is,
Substitute
Section 4:
To determine: The new amplitude of the vibration system after collision.
Answer: The new amplitude of the vibration system after collision is
Given info: The mass of the particle is
The law of conservation of energy is,
Rearrange the above equation for
Substitute
Conclusion:
Therefore, the new amplitude of the vibration system after collision is
(b)
The factor by which the period of system changed.
(b)

Answer to Problem 63P
The factor by which the period of system changed is
Explanation of Solution
Section 1:
To determine: The initial period of system.
Answer: The initial period of system is
Given info: The mass of the particle is
The formula for the period of the system before collision is,
Substitute
Section 2:
To determine: The final period of system.
Answer: The final period of system is
Given info: The mass of the particle is
The formula for the period of the system after collision is,
Substitute
Section 3:
To determine: The factor by which the period of system changed.
Answer: The factor by which the period of system changed is
Given info: The mass of the particle is
The factor by which period is changed calculated as,
Substitute
Conclusion:
Therefore, the factor by which the period of system changed is
(c)
The energy changed of the system after the collision.
(c)

Answer to Problem 63P
The energy of the system after the collision is decreased by factor
Explanation of Solution
Given info: The mass of the particle is
The formula for the energy of the system before collision is,
The formula for the energy of the system after collision is,
The chance in the energy is calculated as,
Substitute
Substitute
Conclusion:
Therefore, the energy of the system after the collision is decreased by factor
(d)
To explain: The change in the energy.
(d)

Explanation of Solution
The energy of the system is defined as the capacity to do any work. The energy is the sum of potential and the kinetic energy of the system.
The type of the collision of the system is inelastic due to this the kinetic energy does not remains conserved. The mechanical energy of the system is transformed into the internal energy. So there are energy losses due to conversion of energy.
Conclusion:
Therefore, the mechanical energy of the system is transformed into the internal energy in the perfectly inelastic collision.
Want to see more full solutions like this?
Chapter 12 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Min Min is hanging from her spring-arms off the edge of the level. Due to the spring like nature of her arms she is bouncing up and down in simple harmonic motion with a maximum displacement from equilibrium of 0.118 m. The spring constant of Min-Min’s arms is 9560. N/m and she has a mass of 87.5 kg. What is the period at which she oscillates? Find her maximum speed. Find her speed when she is located 5.00 cm from her equilibrium position.arrow_forward(a) What magnification in multiples is produced by a 0.150 cm focal length microscope objective that is 0.160 cm from the object being viewed? 15.9 (b) What is the overall magnification in multiples if an eyepiece that produces a magnification of 7.90x is used? 126 × ×arrow_forwardGravitational Potential Energyarrow_forward
- E = кедо Xo A continuous line of charge lies along the x axis, extending from x = +x to positive infinity. The line carries positive charge with a uniform linear charge density 10. (a) What is the magnitude of the electric field at the origin? (Use the following as necessary: 10, Xo, and ke.) (b) What is the direction of the electric field at the origin? O O O O O O G -y +z ○ -z +x -x +yarrow_forwardInclude free body diagramarrow_forward2 Spring 2025 -03 PITT Calculate the acceleration of a skier heading down a 10.0° slope, assuming the coefficient of cold coast at a constant velocity. You can neglect air resistance in both parts. friction for waxed wood on wet snow fly 0.1 (b) Find the angle of the slope down which this skier Given: 9 = ? 8=10° 4=0.1arrow_forward
- dry 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a c piston into a steel cylinder. What is the normal force between the piston and cyli=030 What force would she have to exert if the steel parts were oiled? k F = 306N 2 =0.03 (arrow_forwardInclude free body diagramarrow_forwardInclude free body diagramarrow_forward
- Test 2 МК 02 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a dry = 0.03 (15 pts) piston into a steel cylinder. What is the normal force between the piston and cylinder? What force would she have to exert if the steel parts were oiled? Mk Giren F = 306N MK-0.3 UK = 0.03 NF = ?arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 ke? a = 350 m/s 2arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg? (10 pts) a = 3.50 m/s 2 distance 90 km/h = 3.50m/62 M = 245garrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University





