
Concept explainers
(a)
The new amplitude of the vibration system after collision.
(a)

Answer to Problem 63P
The new amplitude of the vibration system after collision is
Explanation of Solution
Section 1:
To determine: The angular frequency of the system.
Answer: The angular frequency of the system is
Given information: The mass of the particle is
The formula for the angular frequency is,
Substitute
Section 2:
To determine: The maximum speed of the system.
Answer: The maximum speed of the system is
Given information: The mass of the particle is
The formula to calculate maximum speed is,
Substitute
Section 3:
To determine: The speed of the system when the objects stick together after the collision.
Answer: The speed of the system when the objects stick together after the collision is
Given information: The mass of the particle is
The formula to calculate speed after the collision is,
Substitute
Section 4:
To determine: The new amplitude of the vibration system after collision.
Answer: The new amplitude of the vibration system after collision is
Given info: The mass of the particle is
The law of conservation of energy is,
Rearrange the above equation for
Substitute
Conclusion:
Therefore, the new amplitude of the vibration system after collision is
(b)
The factor by which the period of system changed.
(b)

Answer to Problem 63P
The factor by which the period of system changed is
Explanation of Solution
Section 1:
To determine: The initial period of system.
Answer: The initial period of system is
Given info: The mass of the particle is
The formula for the period of the system before collision is,
Substitute
Section 2:
To determine: The final period of system.
Answer: The final period of system is
Given info: The mass of the particle is
The formula for the period of the system after collision is,
Substitute
Section 3:
To determine: The factor by which the period of system changed.
Answer: The factor by which the period of system changed is
Given info: The mass of the particle is
The factor by which period is changed calculated as,
Substitute
Conclusion:
Therefore, the factor by which the period of system changed is
(c)
The energy changed of the system after the collision.
(c)

Answer to Problem 63P
The energy of the system after the collision is decreased by factor
Explanation of Solution
Given info: The mass of the particle is
The formula for the energy of the system before collision is,
The formula for the energy of the system after collision is,
The chance in the energy is calculated as,
Substitute
Substitute
Conclusion:
Therefore, the energy of the system after the collision is decreased by factor
(d)
To explain: The change in the energy.
(d)

Explanation of Solution
The energy of the system is defined as the capacity to do any work. The energy is the sum of potential and the kinetic energy of the system.
The type of the collision of the system is inelastic due to this the kinetic energy does not remains conserved. The mechanical energy of the system is transformed into the internal energy. So there are energy losses due to conversion of energy.
Conclusion:
Therefore, the mechanical energy of the system is transformed into the internal energy in the perfectly inelastic collision.
Want to see more full solutions like this?
Chapter 12 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University





