Concept explainers
(a)
The equation of the motion of the particle.
(a)
Answer to Problem 49P
The motion equation of the motion of the particle is
Explanation of Solution
Given information:
Mass of the particle is
Formula to calculate the angular frequency is,
The general equation of the particle’s motion is,
Differentiate the above equation with respect to time.
From the given condition, At
Substitute these values in the above equation.
The maximum value of
Therefore,
Substitute
Substitute
Substitute
Here,
Conclusion:
Therefore, the motion equation of the motion of the particle is
(b)
The position where the potential energy is the three times the kinetic energy.
(b)
Answer to Problem 49P
The position where the potential energy is the three times the kinetic energy is
Explanation of Solution
Given information:
Mass of the particle is
Formula to calculate the maximum energy stored in the spring is,
Formula to calculate the potential energy at any position is,
Formula to calculate the kinetic energy at any position is,
From the given condition,
From the conservation of energy,
Substitute
Substitute
Conclusion:
Therefore, the position where the potential energy is the three times the kinetic energy is
(c)
The minimum time interval required for the particle to move from
(c)
Answer to Problem 49P
The minimum time interval required for the particle to move from
Explanation of Solution
Given information:
Mass of the particle is
The position of the particle is given by,
So, the particle will be at
Initially, at
So, the particle will be at
Therefore, the minimum time interval required for the particle to move from
Conclusion:
Therefore, the minimum time interval required for the particle to move from
(d)
The length of a simple pendulum with same period.
(d)
Answer to Problem 49P
The length of a simple pendulum with same period is
Explanation of Solution
Given information:
Mass of the particle is
Formula to calculate the length of the pendulum is,
Substitute
Conclusion:
Therefore, the length of a simple pendulum with same period is
Want to see more full solutions like this?
Chapter 12 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Consider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardConsider a block of mass 0.200 kg attached to a spring of spring constant 100 N/m. The block is placed on a frictionless table, and the other end of the spring is attached to the wall so that the spring is level with the table. The block is then pushed in so that the spring is compressed by 10.0 cm. Find the speed of the block as it crosses (a) the point when the spring is not stretched, (b) 5.00 cm to the left of point in (a), and (c) 5.00 cm to the right of point in (a).arrow_forwardA horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in Figure P7.55. (a) The block is pulled to a position xi = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position xi/2 = 3.00 cm? (d) Why isnt the answer to part (c) half the answer to part (b)? Figure P7.55arrow_forward
- A childs pogo stick (Fig. P7.69) stores energy in a spring with a force constant of 2.50 104 N/m. At position (x = 0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position (x = 0), the spring is relaxed and the child is moving upward. At position , the child is again momentarily at rest at the top of the jump. The combined mass of child and pogo stick is 25.0 kg. Although the boy must lean forward to remain balanced, the angle is small, so lets assume the pogo stick is vertical. Also assume the boy does not bend his legs during the motion. (a) Calculate the total energy of the childstickEarth system, taking both gravitational and elastic potential energies as zero for x = 0. (b) Determine x. (c) Calculate the speed of the child at x = 0. (d) Determine the value of x for which the kinetic energy of the system is a maximum. (e) Calculate the childs maximum upward speed. Figure P7.69arrow_forwardA block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forwardA light spring with spring constant 1 200 N/m is hung from an elevated support. From its lower end hangs a second light spring, which has spring constant 1 800 N/m. An object of mass 1.50 kg is hung at rest from the lower end of the second spring. (a) Find the total extension distance of the pair of springs. (b) Find the effective spring constant of the pair of springs as a system. We describe these springs as in series.arrow_forward
- A block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forwardYou attach a block to the bottom end of a spring hanging vertically. You slowly let the block move down and find that it hangs at rest with the spring stretched by 15.0 cm. Next, you lift the block back up to the initial position and release it from rest with the spring unstretched. What maximum distance does it move down? (a) 7.5 cm (b) 15.0 cm (c) 30.0 cm (d) 60.0 cm (e) The distance cannot be determined without knowing the mass and spring constant.arrow_forwardA small particle of mass m is pulled to the top of a friction less half-cylinder (of radius R) by a light cord that passes over the top of the cylinder as illustrated in Figure P7.15. (a) Assuming the particle moves at a constant speed, show that F = mg cos . Note: If the particle moves at constant speed, the component of its acceleration tangent to the cylinder must be zero at all times. (b) By directly integrating W=Fdr, find the work done in moving the particle at constant speed from the bottom to the top of the hall-cylinder. Figure P7.15arrow_forward
- A particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardIn the Hunger Games movie (https://openstaxcollege.org/l/21HungGamesclip), Katniss Everdeen fires a 0.0200-kg arrow from ground level to pierce an apple up on a stage. The spring constant of the bow is 330 N/m and she pulls the arrow back a distance of 0.55 m. The apple on the stage is 5.00 m higher than the launching point of the arrow. At what speed does the arrow (a) leave the bow? (b) strike the apple?arrow_forwardA block of mass 200 g is attached at the end of a massless spring of spring constant 50 N/m. The other end of the spring is attached to the ceiling and the mass is released at a height considered to be where the gravitational potential energy is zero. (a) What is the net potential energy of the block at the instant the block is at the lowest point? (b) What is the net potential energy of the block at the midpoint of its descent? (c) What is the speed of the block at the midpoint of its descent?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning