(a)
Interpretation:
The equilibrium constant expressions in terms of the unknown variable x for each given reactions has to be written by using the reaction table (ICE table) approach.
Concept Introduction:
Equilibrium constant
Equilibrium constant
Consider the reaction where A reacts to give B.
On rearranging,
Where,
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for 1 reaction is,
The equilibrium constant expressions in terms of the unknown variable x for 2 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for given reaction is,
The equilibrium constant expressions in terms of the unknown variable x for 3 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expressions in terms of the unknown variable x for given reaction is,
(b)
Interpretation:
The equilibrium constant expressions in terms of the unknown variable x for each given reactions has to be written, which of these expressions yield quadratic equations has to be given.
Concept Introduction:
Refer part (a).
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given reactions and it’s the equilibrium constant expressions in terms of the unknown variable x are,
From the equilibrium constant expression, it yields quadratic equation.
From the equilibrium constant expression, it yields quadratic equation.
From the equilibrium constant expression, it yields quadratic equation.
(c)
Interpretation:
The equilibrium constant expression in terms of the unknown variable x for given reaction has to be written and solving of x has to be explained.
Concept Introduction:
Refer to part (a).
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The equilibrium constant expressions in terms of the unknown variable x for 3 reaction is,
The equilibrium constant expressions for above equation is,
ICE table for the above equation is,
The equilibrium constant expression in terms of the unknown variable x for given reaction is,
The above expression is not a quadratic equation so it is solved as shown below,
Let,
The valve of x is calculated as,
The calculated value is,
Want to see more full solutions like this?
Chapter 12 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- Q1: For each molecule, assign each stereocenter as R or S. Circle the meso compounds. Label each compound as chiral or achiral. + CI Br : Н OH H wo་ཡིག་ཐrow HO 3 D ။။ဂ CI Br H, CI Br Br H₂N OMe R IN I I N S H Br ជ័យ CI CI D OHarrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- %Reflectance 95 90- 85 22 00 89 60 55 50 70 65 75 80 50- 45 40 WA 35 30- 25 20- 4000 3500 Date: Thu Feb 06 17:21:21 2025 (GMT-05:0(UnknownD Scans: 8 Resolution: 2.000 3000 2500 Wavenumbers (cm-1) 100- 2981.77 1734.25 2000 1500 1000 1372.09 1108.01 2359.09 1469.82 1181.94 1145.20 1017.01 958.45 886.97 820.49 668.25 630.05 611.37arrow_forwardNonearrow_forwardCH3 CH H3C CH3 H OH H3C- -OCH2CH3 H3C H -OCH3 For each of the above compounds, do the following: 1. List the wave numbers of all the IR bands in the 1350-4000 cm-1 region. For each one, state what bond or group it represents. 2. Label equivalent sets of protons with lower-case letters. Then, for each 1H NMR signal, give the 8 value, the type of splitting (singlet, doublet etc.), and the number protons it represents. of letter δ value splitting # of protons 3. Redraw the compound and label equivalent sets of carbons with lower-case letters. Then for each set of carbons give the 5 value and # of carbons it represents. letter δ value # of carbonsarrow_forward
- Nonearrow_forwardCarbohydrates- Draw out the Hawthorne structure for a sugar from the list given in class. Make sure to write out all atoms except for carbons within the ring. Make sure that groups off the carbons in the ring are in the correct orientation above or below the plane. Make sure that bonds are in the correct orientation. Include the full name of the sugar. You can draw out your curve within the text box or upload a drawing below.arrow_forwardHow many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)