Concept explainers
A professional center is supplied by a balanced three-phase source. The center has four balance three-phase loads as follows:
Load 1: 150 kVA at 0.8 pf leading
Load 2: 100 kW at unity pf
Load 3: 200 kVA at 0.6 pf lagging
Load 4: 80 kW and 95 kVAR (inductive)
If the line impedance is 0.02 + j0.05 Ω per phase and the line voltage at the loads is 480 V, find the magnitude of the line voltage at the source.
Find the magnitude of the line voltage at the source.
Answer to Problem 81CP
The magnitude of the line voltage at the source is
Explanation of Solution
Given data:
A balanced three-phase source connected to four balanced three-phase loads, Those are,
Load 1:
The apparent power of the Load 1
The power factor of the Load 1 is
Load 2:
The real power of the Load 2
The power factor of the Load 2 is unity.
Load 3:
The apparent power of the Load 3
The power factor of the Load 3 is 0.6 (lagging).
Load 4:
The reactive power of the Load 4
The real power of the Load 4
The line impedance
The line voltage at the loads
Formula used:
Write the expression to find the complex power of the Load 1.
Here,
Write the expression to find the real power of the Load 1.
Here,
Write the expression to find the reactive power of the Load 1.
Here,
Write the expression to find the complex power of the Load 2.
Here,
Write the expression to find the real power
Here,
Rearrange the equation (5) to find the apparent power
Write the expression to find the reactive power
Here,
Write the expression to find the complex power of the Load 3.
Here,
Write the expression to find the real power of the Load 3.
Here,
Write the expression to find the reactive power of the Load 3.
Here,
Write the expression to find the complex power of the Load 4.
Here,
Write the expression to find the total complex power
Here,
Write the expression to find the apparent power (S).
Here,
Write the expression to find the complex power absorbed by the line.
Here,
Write the expression to find the total complex power at the source.
Here,
Write the expression for the apparent power
Here
Calculation:
Load 1:
The given leading power factor of the Load 1 is ,
Re-write the equation to find the angle
Substitute
Substitute
Substitute
Load 2:
Substitute
The given unity power factor of the Load 2,
Rewrite the equation to find the angle
Substitute
Substitute
Load 3:
The given lagging power factor of the Load 3 is,
Rewrite the equation to find the angle
Substitute
Substitute
Substitute
Load 4:
Substitute
Substitute
Here, the apparent power is
Substitute
Re-write the above equation to find the line current
Substitute
Substitute
Re-write the above value as below,
Substitute
Rewrite the above equation to find
Conclusion:
Thus, the magnitude of the line voltage at the source is
Want to see more full solutions like this?
Chapter 12 Solutions
EE 98: Fundamentals of Electrical Circuits - With Connect Access
- NO AI. Please draw CT's on figure with directionarrow_forward15) Complex numbers 21 and 22 are given by Δ Δ Δ Z₁ = 21-60° 22 = 5/45° Determine in polar form: Z, Z₂ b) 21/22 Z₁ C) Z, Z₂ dz 2 zz Z f) JZ ₂ 9) z, (z₂-z₁) * ~22/(Z1+Zz) FAAAAAA Aarrow_forwardform: Express The following Complex numbers in rectangular № 2, b) Z₂ = -3e-jπ/4 c) 23 = √ 3 e d 24 11 -j 25 = ==J 3 -4 2 -j3π/4 f) 26 = (2 + j) 9) 2₂ = (3-j2)³ g D 27 AAA D A 35arrow_forward
- 0) Express The following complex numbers in polar form: az₁ = 3+ j4 2 b) 2₂ = -6+j8 C) 23 = 6j4 Z4=j2 d) 24 = j2 e) 25 = (2+ j)² 3 4) 26 = (3-j2) ³ JZ7 = (1+j) ½/2 27 D D D D D AA D AALarrow_forward21) Determine. The phasor counterparts of the following sinusoidal functions: (a) V₁ (t) = 4 cos (377-30°) V (B) V₂ (t) = -2sin (8T x 10"+ + 18°) V e) V3 (t) = 3 sin (1000 + + 53°)-4c05 (1000 t -17°) v AAA AAAAAarrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- Tutorial - Design of Common-Gate (CG) Amplifier Design a common-gate NMOS amplifier with the following parameters: Supply Voltage (VDD): 10 V ⚫Threshold Voltage (Vth): 2 V •Overdrive Voltage (Vov) = VGS-Vth: 1 V • Desired Voltage Gain Av: 10 V/V • Transconductance gm: to be determined •Ensure that the NMOS operates in the saturation region. ⚫ Design Vos to ensure saturation and enough voltage swing. C₁ Vin +VDD RD C₂ V out Rs WI RLarrow_forwardNEED HANDWRITTEN SOLUTION DO NOT USE CHATGPT OR AIarrow_forwardDetermine the response y(n), n≥0 of the system described by the second order difference equation: y(n)-4y(n-1)+4y(n-2)=x(n)-x(n-1) when the input is x(n)=(−1)" u(n) and the initial conditions are y(-1)=y(-2)=0.arrow_forward
- Consider a Continuous- time LTI System described by y' (+)+ nycH) = x() find yet for a) x(+)o ē+4(H) b) X(+) = u(+). c) X(H= 5(+)arrow_forwardFind the Thevenin equivalent representation of the circuit given to the left of the nodes a and b. Find Vth and Rth and draw the equivalent Thevenin circuit. For Rth use a 1 volt test source as your method.arrow_forwardR(s) + E(s) 100(s+2)(s+6) s(s+3)(s+4) C(s)arrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning