When a motor is set on a pivoted mount seen below, its weight can be used to maintain tension in the drive belt. When the motor is not running the tensions T 1 and T 2 are equal. The total mass of the platform and the motor is 100.0 kg, and the diameter of the drive belt pulley is 16.0 cm. When the motor is off, find: (a) the tension in the belt, and (b) the force at trhe hinged platform support at point C . Assume that the center of mass of the motor plus platform is at the center of the motor.
When a motor is set on a pivoted mount seen below, its weight can be used to maintain tension in the drive belt. When the motor is not running the tensions T 1 and T 2 are equal. The total mass of the platform and the motor is 100.0 kg, and the diameter of the drive belt pulley is 16.0 cm. When the motor is off, find: (a) the tension in the belt, and (b) the force at trhe hinged platform support at point C . Assume that the center of mass of the motor plus platform is at the center of the motor.
When a motor is set on a pivoted mount seen below, its weight can be used to maintain tension in the drive belt. When the motor is not running the tensions
T
1
and
T
2
are equal. The total mass of the platform and the motor is
100.0
kg, and the diameter of the drive belt pulley is
16.0
cm. When the motor is off, find: (a) the tension in the belt, and (b) the force at trhe hinged platform support at point C. Assume that the center of mass of the motor plus platform is at the center of the motor.
8.114 CALC A Variable-Mass Raindrop. In a rocket-propul-
sion problem the mass is variable. Another such problem is a rain-
drop falling through a cloud of small water droplets. Some of these
small droplets adhere to the raindrop, thereby increasing its mass
as it falls. The force on the raindrop is
dp
dv
dm
Fext
=
+
dt
dt
dt
=
Suppose the mass of the raindrop depends on the distance x that it
has fallen. Then m kx, where k is a constant, and dm/dt = kv.
This gives, since Fext
=
mg,
dv
mg = m
+ v(kv)
dt
Or, dividing by k,
dv
xgx
+ v²
dt
This is a differential equation that has a solution of the form
v = at, where a is the acceleration and is constant. Take the initial
velocity of the raindrop to be zero. (a) Using the proposed solution
for v, find the acceleration a. (b) Find the distance the raindrop has
fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of
the raindrop at t = 3.00 s. (For many more intriguing aspects of
this problem, see K. S. Krane, American Journal of…
8.13 A 2.00-kg stone is sliding Figure E8.13
F (kN)
to the right on a frictionless hori-
zontal surface at 5.00 m/s when
it is suddenly struck by an object
that exerts a large horizontal
force on it for a short period of 2.50
time. The graph in Fig. E8.13
shows the magnitude of this force
as a function of time. (a) What
impulse does this force exert on
t (ms)
15.0
16.0
the stone? (b) Just after the force stops acting, find the magnitude
and direction of the stone's velocity if the force acts (i) to the right
or (ii) to the left.
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.