University Physics Volume 1
1st Edition
ISBN: 9781630182137
Author: Samuel J Ling Jeff, Sanny, William Moebs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 60P
A 100-N weight is attached to a free end of a metallic wire that hangs from the ceiling. When a second 100-N weight is added to the wire, it stretches 3.0 mm. The diameter and the length of the wire are 1.0 mm and2.0 m, respectively. What is Young’s modulus of the metal used to manufacture the wire?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the circuit shown in the figure below. (Let R = 12.0 (2.)
25.0 V
10.0
www
10.0 Ω
b
www
5.00 Ω
w
R
5.00 Ω
i
(a) Find the current in the 12.0-0 resistor.
1.95
×
This is the total current through the battery. Does all of this go through R? A
(b) Find the potential difference between points a and b.
1.72
×
How does the potential difference between points a and b relate to the current through resistor R? V
3.90 ... CP A rocket designed to place small payloads into orbit
is carried to an altitude of 12.0 km above sea level by a converted
airliner. When the airliner is flying in a straight line at a constant
speed of 850 km/h, the rocket is dropped. After the drop, the air-
liner maintains the same altitude and speed and continues to fly in
a straight line. The rocket falls for a brief time, after which its
rocket motor turns on. Once its rocket motor is on, the combined
effects of thrust and gravity give the rocket a constant acceleration
of magnitude 3.00g directed at an angle of 30.0° above the hori-
zontal. For reasons of safety, the rocket should be at least 1.00 km
in front of the airliner when it climbs through the airliner's alti-
tude. Your job is to determine the minimum time that the rocket
must fall before its engine starts. You can ignore air resistance.
Your answer should include (i) a diagram showing the flight paths
of both the rocket and the airliner, labeled at several…
1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity
c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°.
Outside the pipe the temperature is fixed at Tout = 15 °C.
If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature
of the fluid at the end of the pipe? (Answer: 83 °C)
please I need to show All work problems step by step
Chapter 12 Solutions
University Physics Volume 1
Ch. 12 - Check Your Understanding Solve Example 12.1 by...Ch. 12 - Check your Understanding Explain which one of the...Ch. 12 - Check your Understanding Repeat Example 12.3 using...Ch. 12 - Check Your understanding Repeat ExampIe12.4...Ch. 12 - Check Your Understanding For the situation in...Ch. 12 - Check Your Understanding Solve the problem in...Ch. 12 - Check Your Understanding A 50-kg person stands 1.5...Ch. 12 - Check Your Understanding A 400.0-N sign hangs from...Ch. 12 - Check Your Understanding Find the compressive...Ch. 12 - Check Your Understanding A 2.0-m-long wire...
Ch. 12 - Check Your Understanding If the normal force...Ch. 12 - Check Your Understanding Explain why the concepts...Ch. 12 - What can you say about the velocity of a moving...Ch. 12 - Under what conditions can a rotating body be in...Ch. 12 - What three factors affect the torque created by a...Ch. 12 - Mechanics sometimes put a length of pipe over the...Ch. 12 - If there is only one external force (or toe)...Ch. 12 - If an object is in equilibrium there must be an...Ch. 12 - If an odd number of forces act on an object, the...Ch. 12 - A body moving in a circle with a constant seed is...Ch. 12 - What purpose is served by a long and flexible pole...Ch. 12 - Is it possible to rest a ladder against a rough...Ch. 12 - Show how a spring scale and a simple fulcrum can...Ch. 12 - A painter climbs a ladder. Is the ladder more...Ch. 12 - Note: Unless stated otherwise, the weights of the...Ch. 12 - When a glass bottle full of vinegar warms up, both...Ch. 12 - A thin wire strung between two nails in the wall...Ch. 12 - Review the relationship between stress and strain....Ch. 12 - What type of stress are you applying when you...Ch. 12 - Can compress stress be applied to a rubber band?Ch. 12 - Can Young’s modulus have a negative value? What...Ch. 12 - If a hypothetical material has a negative bulk...Ch. 12 - Discuss how you might measure the bulk modulus of...Ch. 12 - Note: Unless stated othen.ise the weights of the...Ch. 12 - Steel rods are commonly placed in concrete before...Ch. 12 - When tightening a bolt, you push perpendicularly...Ch. 12 - When opening do you push on it perpendicularly...Ch. 12 - Find the magnitude of the tension in each...Ch. 12 - What force must be applied at point P to keep the...Ch. 12 - Is it possible to apply a force at P to keep in...Ch. 12 - Two children push on opposite of a door during...Ch. 12 - A small 1000-kg SUV has a wheel base of 3.0 m. If...Ch. 12 - The uniform seesaw is balanced at its center of...Ch. 12 - A uniform plank rests on a level surface as shown...Ch. 12 - The uniform seesaw shown below is balanced on a...Ch. 12 - In order to get his car out of the mud, a man ties...Ch. 12 - A uniform 40.0-kg scaffold of length 60 m is...Ch. 12 - When the structure shown below is supported at...Ch. 12 - To get up on the roof, a person (mass 70.0 kg)...Ch. 12 - A uniform horizontal strut weighs 400.0 N. One end...Ch. 12 - The forearm shown below is positioned at an angle ...Ch. 12 - The uniform boom shown below weighs 3000N . It is...Ch. 12 - The uniform boom shown below weighs 700N , and the...Ch. 12 - A 12.0m boom, of a crane lifting a 3000kg load is...Ch. 12 - A uniform trapdoor shown below is 1.0m by 1.5m and...Ch. 12 - A 90kg man walks on a sawhorse, as shown below....Ch. 12 - The “lead” in pencils is a graphite composition...Ch. 12 - TV broadcast antennas are the tallest artificial...Ch. 12 - By how much does a 65.0kg mountain climber stretch...Ch. 12 - When water freezes, its volume increases by 9.05 ....Ch. 12 - A farmer making grape juice fills a glass bottle...Ch. 12 - A disk between vertebrae in the spine is subjected...Ch. 12 - A vertebrae is subjected to a shearing force of...Ch. 12 - Calculate the force a piano tuner applies to...Ch. 12 - A 20.0m -tall hollow aluminium flagpole is...Ch. 12 - A copper wire of diameter 1.0cm stretches 1.0 when...Ch. 12 - As an oil well is drilled, each new section of...Ch. 12 - Alarge uniform cylindrical steel rod of density...Ch. 12 - A 90-kg mountain climber bangs from a nylon rope...Ch. 12 - A suspender rod of a suspension bridge is 25.0 m...Ch. 12 - A copper wire is 1.0 m long and it diameter is 1.0...Ch. 12 - A 100-N weight is attached to a free end of a...Ch. 12 - The bulk modulus of a material is 1.01011N/m2 ....Ch. 12 - Normal forces of magnitude 1.0106N are applied...Ch. 12 - During a walk on a rope, a tightrope walker...Ch. 12 - When using a pencil eraser, you exert a vertical...Ch. 12 - Normal forces are applied uniformly over the...Ch. 12 - A uniform rope of cross-sectional area 0.50cm2...Ch. 12 - One end of a vertical metallic wire of length 2.0m...Ch. 12 - An aluminium (=2.7g/cm3) wire is suspended from...Ch. 12 - The coefficient of static friction between the...Ch. 12 - A pencil rests against a corner, as shown below....Ch. 12 - A uniform 4.0m plank weighing 200.0N rests against...Ch. 12 - A 40kg boy jumps from a height of 3.0m , lands on...Ch. 12 - Two thin rods, one made of steel and the other of...Ch. 12 - Two rods, one made of copper and the other of...Ch. 12 - A horizontal force F is applied to a uniform...Ch. 12 - When a motor is set on a pivoted mount seen below,...Ch. 12 - Two wheels A and B with weights w and 2w ,...Ch. 12 - Weights are gradually added to a pan until a wheel...Ch. 12 - In order to lift a shovelful of dirt, a gardener...Ch. 12 - A uniform rod of length 2R and mass M is attached...Ch. 12 - The pole shown below is at a 90.0 bend in a power...
Additional Science Textbook Solutions
Find more solutions based on key concepts
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
1. Define and distinguish incomplete penetrance and variable expressivity.
Genetic Analysis: An Integrated Approach (3rd Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
How does an obligate aerobe differ from a facultative aerobe?
Brock Biology of Microorganisms (15th Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an isothermal process, you are told that heat is being added to the system. Which of the following is not true? (a) The pressure of the gas is decreasing. (b) Work is being done on the system. (c) The average kinetic energy of the particles is remaining constant. (d) The volume of the gas is increasing. (e) Work is being done by the system.arrow_forwardNo chatgpt pls will upvotearrow_forward8.114 CALC A Variable-Mass Raindrop. In a rocket-propul- sion problem the mass is variable. Another such problem is a rain- drop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is dp dv dm Fext = + dt dt dt = Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m kx, where k is a constant, and dm/dt = kv. This gives, since Fext = mg, dv mg = m + v(kv) dt Or, dividing by k, dv xgx + v² dt This is a differential equation that has a solution of the form v = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero. (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the raindrop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of…arrow_forward
- 8.13 A 2.00-kg stone is sliding Figure E8.13 F (kN) to the right on a frictionless hori- zontal surface at 5.00 m/s when it is suddenly struck by an object that exerts a large horizontal force on it for a short period of 2.50 time. The graph in Fig. E8.13 shows the magnitude of this force as a function of time. (a) What impulse does this force exert on t (ms) 15.0 16.0 the stone? (b) Just after the force stops acting, find the magnitude and direction of the stone's velocity if the force acts (i) to the right or (ii) to the left.arrow_forwardPlease calculate the expectation value for E and the uncertainty in E for this wavefunction trapped in a simple harmonic oscillator potentialarrow_forwardIf an object that has a mass of 2m and moves with velocity v to the right collides with another mass of 1m that is moving with velocity v to the left, in which direction will the combined inelastic collision move?arrow_forward
- Please solve this questionarrow_forwardPlease solvearrow_forwardQuestions 68-70 Four hundred millilitres (mL) of a strong brine solution at room temperature was poured into a measuring cylinder (Figure 1). A piece of ice of mass 100 g was then gently placed in the brine solution and allowed to float freely (Figure 2). Changes in the surface level of the liquid in the cylinder were then observed until all the ice had melted. Assume that the densities of water, ice and the brine solution are 1000 kg m-3, 900 kg m3 and 1100 kg m3, respectively. 68 Figure 1 400 400 Figure 2 1m² = 1x10 mL After the ice was placed in the brine solution and before any of it had melted, the level of the brine solution was closest to 485 mL. B 490 mL. C 495 mL. Displaced volume by ice. D 500 mL. weight of ice 69 The level of the brine solution after all the ice had melted was A 490 mL B 495 mL D 1100kg/m² = 909 xious mis 70 Suppose water of the same volume and temperature had been used instead of the brine solution. In this case, by the time all the ice had melted, the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY