BIO Waves on vocal cords. In the larynx, sound is produced by the vibration of the vocal cords. The diagram in Figure 12.44 is a cross section of the vocal tract at one instant in time. Air flows upward (in the +z direction) through the vocal tract, causing a transverse wave to propagate vertically upward along the surface of the vocal cords. In a typical adult male, the thickness of the vocal cords in the direction of airflow is d = 2.0 mm. High-speed photography shows that for a frequency of vibration of f = 125 Hz, the wave along the surface of the vocal cords travels upward at a speed of u = 375 cm/s. Take t to be time, z to be displacement in the + z direction, and λ to be wavelength. Figure 12.44 Problems 72–74. 72. What is the wavelength of the wave that travels on the surface of the vocal cords when they are vibrating at frequency f ? A. 2.0 mm B. 3.3 mm C. 0.50 cm D. 3.0 cm
BIO Waves on vocal cords. In the larynx, sound is produced by the vibration of the vocal cords. The diagram in Figure 12.44 is a cross section of the vocal tract at one instant in time. Air flows upward (in the +z direction) through the vocal tract, causing a transverse wave to propagate vertically upward along the surface of the vocal cords. In a typical adult male, the thickness of the vocal cords in the direction of airflow is d = 2.0 mm. High-speed photography shows that for a frequency of vibration of f = 125 Hz, the wave along the surface of the vocal cords travels upward at a speed of u = 375 cm/s. Take t to be time, z to be displacement in the + z direction, and λ to be wavelength. Figure 12.44 Problems 72–74. 72. What is the wavelength of the wave that travels on the surface of the vocal cords when they are vibrating at frequency f ? A. 2.0 mm B. 3.3 mm C. 0.50 cm D. 3.0 cm
BIO Waves on vocal cords. In the larynx, sound is produced by the vibration of the vocal cords. The diagram in Figure 12.44 is a cross section of the vocal tract at one instant in time. Air flows upward (in the +z direction) through the vocal tract, causing a transverse wave to propagate vertically upward along the surface of the vocal cords. In a typical adult male, the thickness of the vocal cords in the direction of airflow is d = 2.0 mm. High-speed photography shows that for a frequency of vibration of f = 125 Hz, the wave along the surface of the vocal cords travels upward at a speed of u = 375 cm/s. Take t to be time, z to be displacement in the + z direction, and λ to be wavelength.
Figure 12.44 Problems 72–74.
72. What is the wavelength of the wave that travels on the surface of the vocal cords when they are vibrating at frequency f?
The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0
s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s?
a (m/s²)
as
-2
0
2
t(s)
4
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN.
P
125 kN
B
125 kN
C
0.9 m
1.2 m
The smallest allowable value of the diameter d₁ is
The smallest allowable value of the diameter d₂ is
mm.
mm.
Westros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY