Consider the system
(a) PD at 11 min PD at 12 min.
(b) PA at 5 min PA at 7 min.
(c) K for the forward reaction K for the reverse reaction.
(d) At equilibrium, K Q.
(e) After the system is at equilibrium, more of gas B is added. After the system returns to equilibrium, K before the addition of B K after the addition of B.
(f) The same reaction is initiated, this time with a catalyst K for the system without a catalyst the system with a catalyst.
(g) K for the formation of one mole of D K for the formation of two moles of D.
(h) The temperature of the system is increased to 35°C. PB at equilibrium at 25°C PB at equilibrium at 35°C.
(i) Ten more grams of C are added to the system. PB before the addition of C PB after the addition of C.

(a)
Interpretation:
The partial pressure of D needs to be compared at time 11 min and 12 min.
Concept introduction:
The system is said to be in equilibrium if the there is no change in the partial pressure or concentration of reactant and product takes place.
For a general equilibrium reaction as follows:
The expression for the equilibrium constant is represented as follows:
Here, to calculate the equilibrium constant, the values of partial pressure of all the species in reactant and product side are required.
Answer to Problem 71QAP
Partial pressure of D gas at 11 min will be equal to (EQ) the partial pressure of D at 12 min.
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
Thus, the partial pressure of each gas after 10 min will be equal. Therefore, partial pressure of D gas at 11 min will be equal the partial pressure of D at 12 min.

(b)
Interpretation:
The partial pressure of A needs to be compared at time 5 min and 7 min.
Concept introduction:
The system is said to be in equilibrium if the there is no change in the partial pressure or concentration of reactant and product takes place.
Answer to Problem 71QAP
The partial pressure of A gas at 5 min will be greater than (GT) the partial pressure of A gas at 7 min.
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
Since, reaction is moving in forward direction, the partial pressure of A decreases with increase in time.
Therefore, the partial pressure of A gas at 5 min will be greater than the partial pressure of A gas at 7 min.

(c)
Interpretation:
The value of K for the forward reaction needs to be compared with the reverse reaction.
Concept introduction:
The system is said to be in equilibrium if the there is no change in the partial pressure or concentration of reactant and product takes place.
For a general equilibrium reaction as follows:
The equilibrium constant for the direction of reaction is more in which it is moving. If the reaction is in forward direction, K for forward reaction is more and if it is moving in reverse direction, K for reverse reaction is more.
Answer to Problem 71QAP
The value of K for forward reaction is greater than (GT) K for backward or reverse reaction.
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
Initially, the partial pressure of gas D is not given thus, the reaction is moving in forward direction.
Therefore, the value of K for forward reaction is greater than K for backward or reverse reaction.

(d)
Interpretation:
The relation between the value of K and Q at equilibrium needs to be determined.
Concept introduction:
The system is said to be in equilibrium if the there is no change in the partial pressure or concentration of reactant and product takes place.
Answer to Problem 71QAP
The value of K is equal to (EQ) the value of Q or reaction quotient at equilibrium.
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
Since, there is no change in the concentration of species takes place at equilibrium, the value of K is equal to the value of Q or reaction quotient at equilibrium.

(e)
Interpretation:
If B is added after equilibrium, the change in K needs to be determined.
Concept introduction:
According to Le Chatelier’s principle, if at equilibrium, any change in temperature, concentration or pressure is applied to a system, the shift in equilibrium takes place to counteract the change.
Also, on compressing a system, the total pressure of the system increases thus, reaction shifts to decrease the total pressure and number of moles of gaseous species.
Opposite to this on expansion, the total pressure of the system decreases thus, reaction shifts to increase the total pressure and number of moles of gaseous species.
Only change in temperature can change the value of K, in other cases the value of K remains the same.
There are 3 conditions that can change the equilibrium direction in a system:
- Addition and removal of gaseous species.
- Expansion and compression of the system.
- Change in temperature of the system.
Answer to Problem 71QAP
The value of K before addition of B is less than (LT) K after the addition.
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
After equilibrium, if more gas B is added, the reaction shifts in forward direction to decrease the partial pressure of gas B and the value of K increase.
Therefore, the value of K before addition of B is less than K after the addition.

(f)
Interpretation:
The value of K with or without catalyst needs to be compared.
Concept introduction:
Catalyst increases the rate of the reaction; it does not affect the amount of product formed in the reaction. Therefore, it does not change the value of equilibrium constant for a reaction.
Answer to Problem 71QAP
The value of K with or without the catalyst is equal. (EQ)
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
In the presence of catalyst, the value of K remains the same. The presence of catalyst only increases the rate of reaction, the amount of product formed remains the same thus, the value of K remains the same.
Therefore, the value of K with or without the catalyst is equal.

(g)
Interpretation:
If temperature of the system is increased after 20 min, the change in partial pressure of A needs to be determined.
Concept introduction:
The system is said to be in equilibrium if the there is no change in the partial pressure or concentration of reactant and product takes place.
For a general equilibrium reaction as follows:
The expression for the equilibrium constant is represented as follows:
Here, to calculate the equilibrium constant, the values of partial pressure of all the species in reactant and product side are required.
Answer to Problem 71QAP
The value of K for formation of 1 mol of D will be less than (LT) the value of K for formation of 2 mol of D.
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
The number of moles of gases is directly proportional to the partial pressure. If number of moles increases, partial pressure also increases.
For product, if partial pressure increases the value of K also increases thus, the value of K for formation of 1 mol of D will be less than the value of K for formation of 2 mol of D.

(h)
Interpretation:
The change in partial pressure of B due to increase in temperature at equilibrium needs to be determined.
Concept introduction:
According to Le Chatelier’s principle, if at equilibrium, any change in temperature, concentration or pressure is applied to a system, the shift in equilibrium takes place to counteract the change.
Also, on compressing a system, the total pressure of the system increases thus, reaction shifts to decrease the total pressure and number of moles of gaseous species.
Opposite to this on expansion, the total pressure of the system decreases thus, reaction shifts to increase the total pressure and number of moles of gaseous species.
Only change in temperature can change the value of K, in other cases the value of K remains the same.
There are 3 conditions that can change the equilibrium direction in a system:
- Addition and removal of gaseous species.
- Expansion and compression of the system.
- Change in temperature of the system.
Answer to Problem 71QAP
The change in value of K or partial pressure of B cannot be determined due to increase in temperature.(MI)
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
If temperature of the system is increases, more information is required to determine the change in partial pressure of gas B.
The value of K depends on the temperature, but it also depends on the sign of the change in enthalpy of the reaction which depends on the type of reaction as if it is endothermic or exothermic reaction.
For exothermic reaction, the value of change in enthalpy is negative and for such reaction, the value of K decreases with increase in temperature.
And, for endothermic reaction, the value of change in enthalpy is positive and for such reaction, the value of K increases with increase in temperature.
Since, any information related to type of reaction or change in enthalpy, the change in value of K or partial pressure of B cannot be determined due to increase in temperature.

(i)
Interpretation:
The change in the partial pressure of A due to addition of 10 g of C to the system needs to be determined.
Concept introduction:
The system is said to be in equilibrium if the there is no change in the partial pressure or concentration of reactant and product takes place.
For a general equilibrium reaction as follows:
The expression for the equilibrium constant is represented as follows:
Here, to calculate the equilibrium constant, the values of partial pressure of all the species in reactant and product side are required.
Any species in pure solid and liquid phase does not participate in equilibrium expression thus, it does not affect the equilibrium of the reaction.
Answer to Problem 71QAP
The partial pressure of B after the addition of 10 g more solid C will be equal to (EQ) the partial pressure of B before the addition.
Explanation of Solution
The given reaction is as follows:
At zero time, only A, B and C is present.
After 10 min, equilibrium is reached.
If 10 g of more solid C is added to the system, there will be no change in the equilibrium takes place. This is because the species in solid phase cannot affect the value of K as they are not present in the equilibrium expression.
Thus, the partial pressure of B after the addition of 10 g more solid C will be equal to the partial pressure of B before the addition.
Want to see more full solutions like this?
Chapter 12 Solutions
OWLv2 for Masterton/Hurley's Chemistry: Principles and Reactions, 8th Edition, [Instant Access], 1 term (6 months)
- Polar solutes are most likely to dissolve into _____, and _____ are most likely to dissolve into nonpolar solvents. A. nonpolar solutes; polar solvents B. nonpolar solvents; polar solvents C. polar solvents; nonpolar solutes D. polar solutes; nonpolar solventsarrow_forwardDeducing the Peactants Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Xarrow_forwardDraw all 8 stereoisomers, circling each pair of enantiomer(s)/ mirror image compound(s)arrow_forward
- Bookmarks Profiles Tab Window Help Chemical Formula - Aktiv Che X + → C 11 a app.aktiv.com Google Chrome isn't your default browser Set as default Question 12 of 16 Q Fri Feb 2 Verify it's you New Chrome availabl- Write the balanced molecular chemical equation for the reaction in aqueous solution for mercury(I) nitrate and chromium(VI) sulfate. If no reaction occurs, simply write only NR. Be sure to include the proper phases for all species within the reaction. 3 Hg(NO3)2(aq) + Cг2(SO4)3(aq) → 3 Hg₂SO (s) + 2 Cr(NO3), (aq) ean Ui mate co ence an climate bility inc ulnerabili women, main critic CLIMATE-INI ernational + 10 O 2 W FEB 1 + 4- 3- 2- 2 2 ( 3 4 NS 28 2 ty 56 + 2+ 3+ 4+ 7 8 9 0 5 (s) (1) Ch O 8 9 (g) (aq) Hg NR CI Cr x H₂O A 80 Q A DII A F2 F3 FA F5 F6 F7 F8 F9 #3 EA $ do 50 % 6 CO & 7 E R T Y U 8 ( 9 0 F10 34 F11 川 F12 Subr + delete 0 { P }arrow_forwardDeducing the reactants of a Diels-Alder reaction n the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. >arrow_forwardPredict the major products of the following organic reaction: + Some important notes: A ? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure.arrow_forward
- if the answer is no reaction than state that and please hand draw!arrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





