Bundle: Welding: Principles and Applications, 8th + MindTap Welding, 4 terms (24 months) Printed Access Card
8th Edition
ISBN: 9781337219426
Author: Larry Jeffus
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 6R
How can FCA welding guns be cooled?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider the bar, shown in Figure 1 that undergoes axial displacement due to both a distributed load
and a point force. The bar is of cross-sectional area A = 1.10-3 m², and has a modulus of elasticity
E = 100 GPa.
1(x) = 5 kN/m
x=0.0
x=2.0
2.0m
10 kN
Figure 1: Bar domain with varying distributed forces.
a) The general form of the governing equations describing the bar's displacement, u(x), is given by,
d
(AE du(x))
-) +1(x) = 0.
d.x
dx
What are the accompanying boundary conditions for this bar?
b) Using the mesh in Figure 2, form the basis functions associated with element 2 and write the FEM
approximation over the element.
1
2
3
1
2
1m
1m
Figure 2: Mesh of 2 elements. Elements are numbered with underlines.
c) The general form of the element stiffness matrix system, with nodes indexed by i and j, is,
AE
Uj
N;(x)l(x)dx
– Ng(0)f(0)
¥ [4]}]{{}}={{{}\(\\+} + {N(2)f(2) = N (0)5() },
(1)
0, respectively.
L
=
(2)
where f(2) and f(0) denote the boundary forces at positions x 2 and x
Evaluate…
answer please
amination)
Question 1
Consider the bar, shown in Figure 1, that undergoes axial displacement due to both a distributed load
and a point force. The bar is of cross-sectional area A = 1.103 m2, and has a modulus of elasticity
E = 100 GPa.
1(x) = 5 kN/m
10 kN
X
x=0.0
x=2.0
2.0m
Figure 1: Bar domain with varying distributed forces.
a) The general form of the governing equations describing the bar's displacement, u(x), is given by,
d
(AE du(x)) + 1(x) = 0.
dx
dx
What are the accompanying boundary conditions for this bar?
MacBook Air
a
会
DII
F5
F6
F7
F8
80
F3
F4
0/
20
[8 marksl
8
FO
Chapter 12 Solutions
Bundle: Welding: Principles and Applications, 8th + MindTap Welding, 4 terms (24 months) Printed Access Card
Ch. 12 - List some factors that have led to the increased...Ch. 12 - How is FCAW similar to GMAW?Ch. 12 - What does the FCA flux provide to the weld?Ch. 12 - What are the major atmospheric contaminations of...Ch. 12 - How does slag help an FCA weld?Ch. 12 - How can FCA welding guns be cooled?Ch. 12 - Excessive drive roller pressure causes what...Ch. 12 - List the advantages that FCA welding offers the...Ch. 12 - Describe the two methods of manufacturing FCA...Ch. 12 - Why are the large diameter electrodes not used for...
Ch. 12 - How do deoxidizers remove oxygen from the weld...Ch. 12 - What do fluxing agents do for a weld?Ch. 12 - Why are alloying elements added to the flux?Ch. 12 - How does the flux form a shielding gas to protect...Ch. 12 - What are the main limitations of the rutile...Ch. 12 - Why is it more difficult to use lime-based fluxed...Ch. 12 - What benefit does adding an externally supplied...Ch. 12 - How do excessive amounts of manganese affect a...Ch. 12 - Why are elements added that cause ferrite to form...Ch. 12 - Why must a flux form a less dense slag?Ch. 12 - Referring to Table 12-5, what is the AWS...Ch. 12 - Describe the meaning of each part of the following...Ch. 12 - What does the number 316 in E316T-1 mean?Ch. 12 - What is the advantage of using an argon- CO2 mixed...Ch. 12 - Why are some slags called refractory?Ch. 12 - What can happen to slag that solidifies on the...Ch. 12 - How is the electrode extension measured?Ch. 12 - What can cause porosity in an FCA weld?Ch. 12 - What happens to water in the welding arc?Ch. 12 - What is the thin dark gray or black layer on new...Ch. 12 - Why is uniformly scattered porosity hard to detect...Ch. 12 - What cautions must be taken when chemically...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- show workingarrow_forwardCFD help Figure 3: Advection equation, solution for three different timesteps. Q1) Provide an explanation what conditions and numerical setup could explain the curves. Identify which of the three curves is the first, second and third timestep.arrow_forwardanswer pleasearrow_forward
- Figure 3 shows the numerical solution of the advection equation for a scalar u along x at three consecutive timesteps. 1.0 0.8- 0.6 0.4- 0.2 0.0 00 -0.2 -0.4 -0.6- 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Figure 3: Advection equation, solution for three different timesteps.arrow_forwardQuestion 2 Figure 3 shows the numerical solution of the advection equation for a scalar u along x at three consecutive timesteps. 1.0 0.8- 0.6- 0.4- 0.2- 0.0- -0.2- -0.4- -0.6 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Figure 3: Advection equation, solution for three different timesteps. a) Provide an explanation what conditions and numerical setup could explain the curves. Identify which of the three curves is the first, second and third timestep. b) Consider explicit schemes with central and upwind discretisations. Explain how each of these candidate discretisations could produce the behaviour shown in Figure 3. c) Determine the CFL number that was used in the simulation for each of the candidate schemes for all possible updates. Assume that the timestep and mesh-width used are constant. Read the data to two digits of accuracy from Figure 4 shown at the end of the question, which is an enlarged version of Figure 3. Demonstrate your method and input data for one calculation, but then use a…arrow_forwardanswer pleasearrow_forward
- Provide an explanation what conditions and numerical setup could explain the curves. Identify which of the three curves is the first. second and third timestep.arrow_forwardWhat are the accompanving boundary conditions for this bar?arrow_forward1.1 Consider the fireclay brick wall of Example 1.1 that is operating under different thermal conditions. The tem- perature distribution, at an instant in time, is T(x) = a+ bx where a 1400 K and b = -1000 K/m. Determine the heat fluxes, q", and heat rates, q, at x = 0 and x = L. Do steady-state conditions exist?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY