EBK INTRODUCTION TO CHEMISTRY
5th Edition
ISBN: 9781260162165
Author: BAUER
Publisher: MCGRAW HILL BOOK COMPANY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 6QP
Interpretation Introduction
Interpretation:
Two ways to increase the rate of a given reaction are to be determined.
Concept Introduction:
The rate of a reaction can be affected by a number of ways. The increase in temperature increases the rate by increasing the energy of the particles or molecules which leads to an effective collision. The concentration or surface area of reactants should be increased to increase the rate and the addition of a catalyst may also help.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For this reaction:
Pa(s) +3 02 (g) - POg (s) + heat
Which of the following changes would INCREASE the initial rate of the reaction? More than one answer may be correct. Select all that apply.
O Grind the solid phosphorus into a fine powder
O Use more 02 (g) in the reaction mixture
Heat the reaction to a higher temperature
O Add an appropriate catalyst
Increase the volume of the reaction vessel
Hydrazine, a rocket propellant, can be made from its elements according to this reaction:
8 H2 +
3 N2
N2H4 + 4 NH3
(ammonia is also made)
When the individual rate of the H2 disappearance is -0.00795 M/s, what is the individual rate for N2?
19
Use the following balanced chemical reaction to complete the following questions #7 and #8: CaCl2 (s) + H2O (l) → CaO (s) + 2 HCl (aq) + heat7. Classify the reaction as exothermic or endothermic. 8. State how each of the following changes would affect the rate of the reaction. Explain why the rate would change if it does.a) Place the reaction in a beaker of ice waterb) Add some H2O (l) c) Add some HCl (aq)d) Add a catalyst
Chapter 12 Solutions
EBK INTRODUCTION TO CHEMISTRY
Ch. 12 - Prob. 1QCCh. 12 - Prob. 2QCCh. 12 - Prob. 3QCCh. 12 - Prob. 4QCCh. 12 - Prob. 5QCCh. 12 - Prob. 6QCCh. 12 - Prob. 1PPCh. 12 - Prob. 2PPCh. 12 - Prob. 3PPCh. 12 - Prob. 4PP
Ch. 12 - Prob. 5PPCh. 12 - Prob. 6PPCh. 12 - Prob. 7PPCh. 12 - Prob. 8PPCh. 12 - Prob. 9PPCh. 12 - Prob. 10PPCh. 12 - Consider the following equilibrium:...Ch. 12 - Prob. 12PPCh. 12 - Prob. 1QPCh. 12 - Match the key terms with the descriptions...Ch. 12 - Prob. 3QPCh. 12 - Prob. 4QPCh. 12 - Prob. 5QPCh. 12 - Prob. 6QPCh. 12 - Prob. 7QPCh. 12 - Prob. 8QPCh. 12 - Prob. 9QPCh. 12 - Prob. 10QPCh. 12 - Prob. 11QPCh. 12 - Prob. 12QPCh. 12 - Prob. 13QPCh. 12 - Prob. 14QPCh. 12 - Prob. 15QPCh. 12 - Prob. 16QPCh. 12 - Prob. 17QPCh. 12 - Prob. 18QPCh. 12 - Prob. 19QPCh. 12 - Prob. 20QPCh. 12 - Prob. 21QPCh. 12 - Prob. 22QPCh. 12 - Prob. 23QPCh. 12 - Prob. 24QPCh. 12 - Prob. 25QPCh. 12 - Prob. 26QPCh. 12 - Prob. 27QPCh. 12 - Prob. 28QPCh. 12 - Prob. 29QPCh. 12 - Prob. 30QPCh. 12 - Prob. 31QPCh. 12 - Prob. 32QPCh. 12 - Prob. 33QPCh. 12 - Prob. 34QPCh. 12 - Prob. 35QPCh. 12 - Prob. 36QPCh. 12 - Prob. 37QPCh. 12 - Prob. 38QPCh. 12 - Prob. 39QPCh. 12 - Prob. 40QPCh. 12 - Prob. 41QPCh. 12 - Prob. 42QPCh. 12 - Prob. 43QPCh. 12 - Prob. 44QPCh. 12 - Prob. 45QPCh. 12 - Prob. 46QPCh. 12 - Prob. 47QPCh. 12 - Prob. 48QPCh. 12 - Prob. 49QPCh. 12 - Prob. 50QPCh. 12 - Prob. 51QPCh. 12 - Prob. 52QPCh. 12 - Prob. 53QPCh. 12 - Prob. 54QPCh. 12 - Prob. 55QPCh. 12 - Prob. 56QPCh. 12 - Prob. 57QPCh. 12 - Prob. 58QPCh. 12 - Prob. 59QPCh. 12 - Prob. 60QPCh. 12 - Prob. 61QPCh. 12 - Prob. 62QPCh. 12 - Prob. 63QPCh. 12 - Prob. 64QPCh. 12 - Prob. 65QPCh. 12 - Prob. 66QPCh. 12 - Prob. 67QPCh. 12 - Prob. 68QPCh. 12 - Prob. 69QPCh. 12 - Prob. 70QPCh. 12 - Prob. 71QPCh. 12 - Prob. 72QPCh. 12 - Prob. 73QPCh. 12 - Prob. 74QPCh. 12 - Prob. 75QPCh. 12 - Prob. 76QPCh. 12 - Prob. 77QPCh. 12 - Prob. 78QPCh. 12 - Prob. 79QPCh. 12 - Prob. 80QPCh. 12 - Prob. 81QPCh. 12 - Prob. 82QPCh. 12 - Prob. 83QPCh. 12 - Prob. 84QPCh. 12 - Prob. 85QPCh. 12 - Prob. 86QPCh. 12 - Prob. 87QPCh. 12 - Prob. 88QPCh. 12 - Prob. 89QPCh. 12 - Prob. 90QPCh. 12 - Prob. 91QPCh. 12 - Prob. 92QPCh. 12 - Prob. 93QPCh. 12 - Prob. 94QPCh. 12 - Prob. 95QPCh. 12 - Prob. 96QPCh. 12 - Prob. 97QPCh. 12 - Prob. 98QPCh. 12 - Prob. 99QPCh. 12 - Prob. 100QPCh. 12 - Prob. 101QPCh. 12 - Prob. 102QPCh. 12 - Prob. 103QPCh. 12 - Prob. 104QPCh. 12 - Prob. 105QPCh. 12 - Prob. 106QPCh. 12 - Prob. 107QPCh. 12 - Prob. 108QPCh. 12 - Prob. 109QPCh. 12 - Prob. 110QPCh. 12 - Prob. 111QPCh. 12 - Prob. 112QPCh. 12 - Prob. 113QPCh. 12 - Prob. 114QPCh. 12 - Prob. 115QPCh. 12 - Prob. 116QPCh. 12 - Prob. 117QPCh. 12 - Prob. 118QPCh. 12 - Prob. 119QPCh. 12 - Prob. 120QPCh. 12 - Prob. 121QPCh. 12 - Prob. 122QPCh. 12 - Prob. 123QPCh. 12 - Prob. 124QPCh. 12 - Prob. 125QPCh. 12 - Prob. 126QPCh. 12 - Prob. 127QPCh. 12 - Prob. 128QPCh. 12 - Prob. 129QPCh. 12 - Prob. 130QPCh. 12 - Prob. 131QPCh. 12 - Prob. 132QPCh. 12 - Prob. 133QPCh. 12 - Prob. 134QPCh. 12 - Prob. 135QPCh. 12 - Prob. 136QPCh. 12 - Prob. 137QPCh. 12 - Prob. 138QPCh. 12 - Prob. 139QPCh. 12 - Prob. 140QPCh. 12 - Prob. 141QPCh. 12 - Prob. 142QPCh. 12 - Prob. 143QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The following equation represents a reversible decomposition: CaCO3(s)CaO(s)+CO2(g) Under what conditions will decomposition in a closed container proceed to completion so that no CaCO3 remains?arrow_forwardSilicon forms a series of compounds analogous to the al-kanes and having the general formula SinH2n+2. The first of these compounds is silane, SiH4, which is used in the electronics industry to produce thin ultrapure silicon films. SiH4(g) is somewhat difficult to work with because it is py-ropboric at room temperature—meaning that it bursts into flame spontaneously when exposed to air. (a) Write an equation for the combustion of SiH4(g). (The reaction is analogous to hydrocarbon combustion, and SiO2 is a solid under standard conditions. Assume the water produced will be a gas.) (b) Use the data from Appendix E to calculate ? for this reaction. (c) Calculate G and show that the reaction is spontaneous at 25°C. (d) Compare G for this reaction to the combustion of methane. (See the previous problem.) Are the reactions in these two exercises enthalpy or entropy driven? Explain.arrow_forwardDetermine rxnH 25 C for the following reaction: NO g O2 g NO2 g This reaction is a major participant in the formation of smog.arrow_forward
- The direct reaction of iron(III) oxide. Fe2O3, to give iron and oxygen gas is a nonspontaneous reaction; normally, iron combines with oxygen to give rust (the oxide). Yet we do change iron(III) oxide, as iron ore, into iron metal. How is this possible? Explain.arrow_forwardOne of the components of polluted air is NO. It is formed in the high-temperature environment of internal combustion engines by the following reaction: N2(g)+O2(g)2NO(g)H=180KJ Why are high temperatures needed to convert N2 and O2 to NO?arrow_forwardSubstances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forward
- Old-fashioned smelling salts consist of ammonium carbonate, (NH4)2CO3. The reaction for the decomposition of ammonium carbonate (NH4)2CO3(s)2NH3(g)+CO(g)+H2O(g) is endothermic. Would the smell of ammonia increase or decrease as the temperature is increased?arrow_forwardThe reaction of carbon monoxide with hydrogen to form methanol is quite slow at room temperature. As a general rule, reactions go faster at higher temperatures. Suppose that you tried to speed up this reaction by increasing the temperature. (a) Assuming that rH does not change very much as the temperature changes, what effect would increasing the temperature have on rSsurroundings? (b) Assuming that rS for a reaction System does not change much as the temperature changes, what effect would increasing the temperature have on rSuniverse?arrow_forwardConsider the reaction N2O4(g)2NO2(g). Would you expect this reaction to be endothermic or exothermic? Why? N2O4 is a colorless gas; NO2 is red-brown. Would you expect a mixture of these gases to become more or less red-brown as you raise the temperature? Explain.arrow_forward
- Classify the following processes according to their rates as very slow, slow, or fast: a.The souring of milk stored in a refrigerator b.The cooking of an egg in boiling water c.The rusting of a shovel left in the garden over the winter d.The growing of corn during a warm summer e.The burning of a lighted match.arrow_forwardFor each of the changes listed will the rate of the following chemical reaction increase, decrease, or remain the same? Cu(s)+H2SO4(aq)CuSO4(aq)+H2(g) a. the concentration of H2SO4 is increased b. the copper is ground into a powder c. the mixture is stirred rapidly d. the temperature of the solution is increasedarrow_forwardOne of the concerns about the use of Freons is that they will migrate to the upper atmosphere, where chlorine atoms can be generated by the following reaction: CCl2F2(g)Freon-12hvCF2Cl(g)+Cl(g) Chlorine atoms can act as a catalyst for the destruction of ozone. The activation energy for the reaction Cl(g) + O3(g) ClO(g) + O2(g) Is 2.1 kJ/mol. Which is the more effective catalyst for the destruction of ozone, Cl or NO? (See Exercise 75.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning