Figure 12.31 shows a popular system for mounting bookshelves. An aluminum bracket is mounted on a vertical aluminum support by small tabs inserted into vertical slots. Contact between the bracket and support occurs only at the upper tab and at the bottom of the bracket, 4.5 cm below the upper tab. If each bracket in the shelf system supports 32 kg of books, with the center of gravity 12 cm out from the vertical support, what is the horizontal component of the force exerted on the upper bracket tab? FIGURE 12.31 Problem 55
Figure 12.31 shows a popular system for mounting bookshelves. An aluminum bracket is mounted on a vertical aluminum support by small tabs inserted into vertical slots. Contact between the bracket and support occurs only at the upper tab and at the bottom of the bracket, 4.5 cm below the upper tab. If each bracket in the shelf system supports 32 kg of books, with the center of gravity 12 cm out from the vertical support, what is the horizontal component of the force exerted on the upper bracket tab? FIGURE 12.31 Problem 55
Figure 12.31 shows a popular system for mounting bookshelves. An aluminum bracket is mounted on a vertical aluminum support by small tabs inserted into vertical slots. Contact between the bracket and support occurs only at the upper tab and at the bottom of the bracket, 4.5 cm below the upper tab. If each bracket in the shelf system supports 32 kg of books, with the center of gravity 12 cm out from the vertical support, what is the horizontal component of the force exerted on the upper bracket tab?
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Chapter 12 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.