CONNECT ACCESS CARD FOR ANATOMY AND PHYSIOLOGY
8th Edition
ISBN: 9781259880193
Author: SALADIN
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 4WWTS
Summary Introduction
Introduction:
An action potential is a more considerable change formed by voltage-gated ion channels in the membrane. Any change in the resting membrane potential of a nerve cell produced by a stimulus, opening ligand regulated Na+ gate in the plasma membrane of the neuron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why do only a small number of sodium ions need to flow through the Na+ channel to change the membrane potential significantly?
What happens to the membrane potential when Na+/K+ pump is active?
Describe the concentration differences for Na+ and K+that exist across the plasma membrane.
Chapter 12 Solutions
CONNECT ACCESS CARD FOR ANATOMY AND PHYSIOLOGY
Ch. 12.1 - What is a receptor? Give two examples of...Ch. 12.1 - Distinguish between the central and peripheral...Ch. 12.1 - Prob. 3BYGOCh. 12.1 - What the nervous and endocrine systems have in...Ch. 12.1 - Three fundamental functions of the nervous system;...Ch. 12.1 - Differences between the central nervous system...Ch. 12.1 - The autonomic nervous system and its two divisionsCh. 12.2 - Sketch a multipolar neuron and label its...Ch. 12.2 - Explain the differences between a sensory neuron,...Ch. 12.2 - Prob. 6BYGO
Ch. 12.2 - Prob. 7BYGOCh. 12.2 - Three fundamental physiological properties of...Ch. 12.2 - Prob. 2AYLOCh. 12.2 - Prob. 3AYLOCh. 12.2 - Prob. 4AYLOCh. 12.2 - Ways in winch neurons transport substances between...Ch. 12.3 - Prob. 8BYGOCh. 12.3 - Prob. 9BYGOCh. 12.3 - Prob. 10BYGOCh. 12.3 - Six kinds of neuroglia; the structure and...Ch. 12.3 - Prob. 2AYLOCh. 12.3 - Prob. 3AYLOCh. 12.3 - The regeneration of a damaged nerve fiber; the...Ch. 12.4 - Prob. 11BYGOCh. 12.4 - Prob. 12BYGOCh. 12.4 - Prob. 13BYGOCh. 12.4 - Prob. 14BYGOCh. 12.4 - Prob. 15BYGOCh. 12.4 - Prob. 16BYGOCh. 12.4 - Prob. 17BYGOCh. 12.4 - Prob. 1AYLOCh. 12.4 - What an electrical current is, and how sodium ions...Ch. 12.4 - How stimulation of a neuron generates a local...Ch. 12.4 - Prob. 4AYLOCh. 12.4 - Prob. 5AYLOCh. 12.4 - Prob. 6AYLOCh. 12.4 - Prob. 7AYLOCh. 12.4 - How one action potential triggers another; how the...Ch. 12.4 - Saltatory conduction in a myelinated nerve fiber,...Ch. 12.5 - Prob. 18BYGOCh. 12.5 - Prob. 19BYGOCh. 12.5 - Prob. 20BYGOCh. 12.5 - Prob. 21BYGOCh. 12.5 - Prob. 1AYLOCh. 12.5 - Prob. 2AYLOCh. 12.5 - Prob. 3AYLOCh. 12.5 - Prob. 4AYLOCh. 12.5 - Excitatory synapses; how acetylcholine and...Ch. 12.5 - Prob. 6AYLOCh. 12.5 - Prob. 7AYLOCh. 12.5 - Prob. 8AYLOCh. 12.5 - Prob. 9AYLOCh. 12.6 - Prob. 22BYGOCh. 12.6 - Prob. 23BYGOCh. 12.6 - Prob. 24BYGOCh. 12.6 - Contrast serial and parallel processing and...Ch. 12.6 - Prob. 26BYGOCh. 12.6 - Explain how long-term potentiation and long-term...Ch. 12.6 - Prob. 1AYLOCh. 12.6 - Prob. 2AYLOCh. 12.6 - Prob. 3AYLOCh. 12.6 - How a postsynaptic neurons decision to fire...Ch. 12.6 - Prob. 5AYLOCh. 12.6 - Mechanisms of presynaptic facilitation and...Ch. 12.6 - Prob. 7AYLOCh. 12.6 - Prob. 8AYLOCh. 12.6 - The meanings of neural pool and neural circuitCh. 12.6 - The difference between a neurons discharge zone...Ch. 12.6 - Diverging, converging, reverberating, and parallel...Ch. 12.6 - The difference between serial and parallel...Ch. 12.6 - The cellular basis of memory; what memory consists...Ch. 12.6 - Prob. 14AYLOCh. 12.6 - Prob. 15AYLOCh. 12 - The integrative functions of the nervous system...Ch. 12 - The highest density of voltage-gated ion channels...Ch. 12 - The soma of a mature neuron lacks a. a nucleus. b....Ch. 12 - The glial cells that fight infections in the CNS...Ch. 12 - Posttetanic potentiation of a synapse increases...Ch. 12 - An IPSP is_____of the postsynaptic neuron. a. a...Ch. 12 - Prob. 7TYRCh. 12 - Prob. 8TYRCh. 12 - Prob. 9TYRCh. 12 - Prob. 10TYRCh. 12 - Prob. 11TYRCh. 12 - Prob. 12TYRCh. 12 - Prob. 13TYRCh. 12 - Prob. 14TYRCh. 12 - Prob. 15TYRCh. 12 - A myelinated nerve fiber can produce action...Ch. 12 - Prob. 17TYRCh. 12 - Prob. 18TYRCh. 12 - Prob. 19TYRCh. 12 - Prob. 20TYRCh. 12 - Prob. 1BYMVCh. 12 - Prob. 2BYMVCh. 12 - Prob. 3BYMVCh. 12 - Prob. 4BYMVCh. 12 - Prob. 5BYMVCh. 12 - Prob. 6BYMVCh. 12 - Prob. 7BYMVCh. 12 - Prob. 8BYMVCh. 12 - Prob. 9BYMVCh. 12 - Prob. 10BYMVCh. 12 - Prob. 1WWTSCh. 12 - Prob. 2WWTSCh. 12 - Prob. 3WWTSCh. 12 - Prob. 4WWTSCh. 12 - Excitatory postsynaptic potentials lower the...Ch. 12 - Prob. 6WWTSCh. 12 - Prob. 7WWTSCh. 12 - Myelinated nerve fibers conduct signals more...Ch. 12 - Prob. 9WWTSCh. 12 - Prob. 10WWTSCh. 12 - Schizophrenia is sometimes treated with drugs such...Ch. 12 - Hyperkalemia is an excess of potassium ill the...Ch. 12 - Suppose a poison were to slow down the Na+-K+...Ch. 12 - Prob. 4TYCCh. 12 - Prob. 5TYC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- The accelerating flow of _______ ions through gated channels across the membrane triggers an action potential. a. potassium b. sodium c. hydrogen d. a and barrow_forwardDescribe the contribution of each of the following to establishing and maintaining membrane potential: (a) the Na+K+ pump, (b) passive movement of K+ across the membrane, (c) passive movement of Na+ across the membrane, and (d) the large intracellular anions.arrow_forwardUsing the Goldman-Hodgkin-Katz equation, determine what happens to the resting membrane potential if the ECF K+ concentration doubles to 10 mM.arrow_forward
- One of the important uses of the Nernst equation is in describing the flow of ions across plasma membranes. Ions move under the influence of two forces: the concentration gradient (given in electrical units by the Nernst equation) and the electrical gradient (given by the membrane voltage). This is summarized by Ohms law: Ix=Gx(VmEx) which describes the movement of ion x across the membrane. I is the current in amperes (A); G is the conductance, a measure of the permeability of x, in Siemens (S), which is I/V;Vm is the membrane voltage; and Ex is the equilibrium potential of ion x. Not only does this equation tell how large the current is, but it also tells what direction the current is flowing. By convention, a negative value of the current represents either a positive ion entering the cell or a negative ion leaving the cell. The opposite is true of a positive value of the current. a. Using the following information, calculate the magnitude of Na [ Na+ ]0=145mM,[ Na+ ]i=15mM,Gna+=1nS,Vm=70mV b. Is Na+ entering or leaving the cell? c. Is Na+ moving with or against the concentration gradient? Is it moving with or against the electrical gradient?arrow_forwardif an object b has a plasma sodium concentration of 135mOsm/L and an intracellular concentration of 4mOsm/L. It also has a plasma concentration of potassium of 20mOsm/L and an intracellular concentration of 200mOsm/L. studies identify that the cells have a permeability to potassium that is 10 times greater than sodium. What is the resting membrane potentialarrow_forwardWhich of the following intracellular potentials would have the greatest electrical attraction for Na+ to enter the cell? -70mV Ⓒ) -100mV -50mV OmV +20mVarrow_forward
- Explain the contribution of the Na+/K+ pump activity to the genesis and maintenance of the resting membrane potential and indicate which category of membrane transport the Na+/K+ pump belongs toarrow_forwardThere are differences in Na+, K+, and Cl- ion concentrations across the membrane. Knowing that ions like to flow down their respective concentration gradients explain how the movement of Cl- and K+ ions can result in membrane hyperpolarization.arrow_forwardDescribe the mechanism through which a potassium channel can selectively move K* ions across a membrane while preventing the movement of smaller Na* ions.arrow_forward
- What happens to the membrane potential inside and outside of the cell when Na+ channels are open?arrow_forwardfind the cause that, if the plasma membrane of a cell were freely permeable to the sodium ions, will have an impact on the membrane potential.arrow_forwardAt the peak of an action potential, would the relative permeability of Na be higher than K? Which ion would be the least permeable to the membrane during falling phase?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning
The Cell Membrane; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=AsffT7XIXbA;License: Standard youtube license