Introductory Chemistry (5th Edition) (Standalone Book)
5th Edition
ISBN: 9780321910295
Author: Nivaldo J. Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 41E
Which causes a more severe burn: spilling 0.50 g of 100 °C water on your hand or allowing 0.50 g of 100 °C steam to condense on your hand? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.527 g sample of steam at 103.7 °C is condensed into a container with 5.86 g of water at 16.1 °C. What is the final
temperature of the water mixture if no heat is lost? The specific heat of water is 4.18 , the specific heat of steam is
g. C
2.01 , and AH vap
= -40.7 kJ/mol.
g. °C
Tf =
°C
22) Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you
drink may eventually be converted into sweat and evaporate. If you drink a 20-ounce bottle of water (590g) that
had been in the refrigerator at 3.8 °C, how much heat is needed to convert all of that water into sweat and then to
vapor? (Note: Your body temperature is 36.6 °C. For the purpose of solving this problem, assume that the therm
properties of sweat are the same as for water.
Us, liquid water =
4.184 J/g °C
Cs, steam= 1.84 J/g °C
C3, ice = 2.09 /g °C
AHvap = 40.67 kJ/mol at 36.6 °C.
%3D
A Hus = 6.01 kJ/mol
A) 1420 kJ
B) 81 kJ
C) 1150 kJ
23) Based on the graph shown below, choose the correct statement about sublimation?
Gas
Liquid
sublimation
Solid
A) Sublimation is a phase transition from solid to gas
B) According to Hess Law, AHsub can be calculated as sum of AHvap and AHUS
C) Both A and B are correct
Please solve the questions comprehensively. Thank you!
Compare the effect of drinking 250-ml of ice water with the cooling effect of sweating out 250-ml of water.
Calculate the amount of heat (joules) required to convert 200g of ice cubes (0°C) to gas at 100°C.
Chapter 12 Solutions
Introductory Chemistry (5th Edition) (Standalone Book)
Ch. 12 - The first diagram shown here represents liquid...Ch. 12 - Prob. 2SAQCh. 12 - Prob. 3SAQCh. 12 - How many 20.0-g ice cubes are required to absorb...Ch. 12 - Prob. 5SAQCh. 12 - Prob. 6SAQCh. 12 - Prob. 7SAQCh. 12 - Prob. 8SAQCh. 12 - Prob. 9SAQCh. 12 - Prob. 10SAQ
Ch. 12 - Prob. 1ECh. 12 - Prob. 2ECh. 12 - Prob. 3ECh. 12 - 4. What are the properties of liquids? Explain the...Ch. 12 - 5. What are the properties of solids? Explain the...Ch. 12 - Prob. 6ECh. 12 - Prob. 7ECh. 12 - Prob. 8ECh. 12 - Prob. 9ECh. 12 - Why does a glass of water evaporate more slowly in...Ch. 12 - Prob. 11ECh. 12 - Prob. 12ECh. 12 - 13. Acetone evaporates more quickly than water at...Ch. 12 - Prob. 14ECh. 12 - Prob. 15ECh. 12 - Prob. 16ECh. 12 - 17. Explain why a steam burn from gaseous water at...Ch. 12 - Prob. 18ECh. 12 - Prob. 19ECh. 12 - Prob. 20ECh. 12 - Is the melting of ice endothermic or exothermic?...Ch. 12 - 22. Is the boiling of water endothermic or...Ch. 12 - Prob. 23ECh. 12 - Prob. 24ECh. 12 - 25. What is hydrogen bonding? How can you tell...Ch. 12 - Prob. 26ECh. 12 - Prob. 27ECh. 12 - Prob. 28ECh. 12 - Prob. 29ECh. 12 - Prob. 30ECh. 12 - Prob. 31ECh. 12 - 32. What is an atomic solid? What are the...Ch. 12 - Prob. 33ECh. 12 - Prob. 34ECh. 12 - Prob. 35ECh. 12 - Two samples of pure water of equal volume are put...Ch. 12 - Prob. 37ECh. 12 - Spilling water over your skin on a hot day will...Ch. 12 - Prob. 39ECh. 12 - Water is put into a beaker and heated with a...Ch. 12 - 41. Which causes a more severe burn: spilling 0.50...Ch. 12 - 42. The nightly winter temperature drop in a...Ch. 12 - Prob. 43ECh. 12 - Prob. 44ECh. 12 - Prob. 45ECh. 12 - Why does 50 g of water initially at 0 C warm more...Ch. 12 - In Denver, Colorado, water boils at 95. C....Ch. 12 - Prob. 48ECh. 12 - 49. How much heat is required to vaporize 33.8 g...Ch. 12 - Prob. 50ECh. 12 - How much heat does your body lose when 2.8 g of...Ch. 12 - How much heat does your body lose when 4.86 g of...Ch. 12 - Prob. 53ECh. 12 - Prob. 54ECh. 12 - 55. The human body obtains 835 kJ of energy from a...Ch. 12 - 56. The human body obtains 1078 kJ from a candy...Ch. 12 - How much heat is required to melt 37.4 g of ice at...Ch. 12 - 58. How much heat is required to melt 23.9 g of...Ch. 12 - How much energy is released when 34.2 g of water...Ch. 12 - How much energy is released when 2.55 kg of...Ch. 12 - 61. How much heat is required to convert 2.55 g of...Ch. 12 - 62. How much heat is required to convert 5.88 g of...Ch. 12 - INTERMOLECULAR FORCES
63. What kinds of...Ch. 12 - Prob. 64ECh. 12 - 65. What kinds of intermolecular forces are...Ch. 12 - Prob. 66ECh. 12 - Prob. 67ECh. 12 - What kinds of intermolecular forces are present in...Ch. 12 - Prob. 69ECh. 12 - Prob. 70ECh. 12 - One of these two substances is a liquid at room...Ch. 12 - Prob. 72ECh. 12 - 73. A flask containing a mixture of and is...Ch. 12 - 74. Explain why is a liquid at room temperature...Ch. 12 - Are CH3CH2CH2CH2CH3 and H2O miscible?Ch. 12 - Prob. 76ECh. 12 - Prob. 77ECh. 12 - 78. Determine whether a homogeneous solution forms...Ch. 12 - 79. Identify each solid as molecular, ionic, or...Ch. 12 - Prob. 80ECh. 12 - Identify each solid as molecular, ionic, or...Ch. 12 - Identify each solid as molecular, ionic, or...Ch. 12 - 83. Which solid has the highest melting point?...Ch. 12 - Prob. 84ECh. 12 - 85. For each pair of solids, determine which solid...Ch. 12 - For each pair of solids, determine which solid has...Ch. 12 - 87. List these substances in order of increasing...Ch. 12 - Prob. 88ECh. 12 - 89. Ice actually has negative caloric content. How...Ch. 12 - Prob. 90ECh. 12 - An 8.5-g ice cube is placed into 255 g of water....Ch. 12 - Prob. 95ECh. 12 - Prob. 96ECh. 12 - Draw a Lewis structure for each molecule and...Ch. 12 - Draw a Lewis structure for each molecule and...Ch. 12 - 99. The melting point of ionic solids depends on...Ch. 12 - Draw ionic Lewis structures for KF and CaO. Use...Ch. 12 - Prob. 101ECh. 12 - Prob. 102ECh. 12 - An ice cube at 0.00 C with a mass of 23.5 g is...Ch. 12 - Prob. 105ECh. 12 - Prob. 106ECh. 12 - Prob. 107ECh. 12 - Prob. 108ECh. 12 - Prob. 109ECh. 12 - Prob. 110ECh. 12 - Prob. 111ECh. 12 - Prob. 112E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which requires the absorption of a greater amount of heat—vaporizing 100.0 g of benzene or boiling 20.0 g of water? (Use Table 8.2.)arrow_forwardThe enthalpy of vaporization of water is larger than its enthalpy of fusion. Explain why.arrow_forwardThe amount of heat required to melt 2 lbs of ice is twice the amount of heat required to melt 1 lb of ice. Is this observation a macroscopic or microscopic description of chemical behavior? Explain your answer.arrow_forward
- A burning match and a bonfire may have the same temperature, yet you would not sit around a burning match on a fall evening to stay warm. Why not?arrow_forwardEvaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventually be converted into sweat and evaporate. If you drink a 20-ounce bottle of water that had been in the refrigerator at 3.8 C, how much heat is needed to convert all of that water into sweat and then to vapor? (Note: Your body temperature is 36.6 oc. For the purpose of solving this problem, assume that the thermal properties of sweat are the same as for water.)arrow_forwardIn regions with dry climates, evaporative coolers are used to cool air. A typical electric air conditioner is rated at 1.00 104 Btu/h (1 Btu, or British thermal unit = amount of energy to raise the temperature of 1 lb water by 1F). What quantity of water must be evaporated each hour to dissipate as much heat as a typical electric air conditioner?arrow_forward
- If you get boiling water at 100 C on your skin, it burns. If you get 100 C steam on your skin, it burns much more severely. Explain why this is so.arrow_forwardIf you want to convert 56.0 g ice (at 0 °C) to water at 75.0 °C, calculate how many grams of propane, C3H8, you would have to bum to supply the energy to melt the ice and then warm it to the final temperature (at 1 bar).arrow_forwardA quantity of ice at 0C is added to 64.3 g of water in a glass at 55C. After the ice melted, the temperature of the water in the glass was 15C. How much ice was added? The heat of fusion of water is 6.01 kJ/mol and the specific heat is 4.18 J/(g C).arrow_forward
- Liquid butane, C4H10, is stored in cylinders to be used as a fuel. Suppose 35.5 g of butane gas is removed from a cylinder. How much heat must be provided to vaporize this much gas? The heat of vaporization of butane is 21.3 kJ/mol.arrow_forwardWhy are steam burns so much worse than water burns even if the H2O is at the same temperature for both phases? Hint: Consider the heat of vaporization of water.arrow_forward1. Which of the following processes requires the largest input of energy as heat? raising the temperature of 100 g of water by 1.0 °C vaporization of 0.10 g of water at 100 °C melting 1.0 g of ice at 0 °C warming 1.0 g of ice from −50 °C to 0 °C (specific heat of ice = 2.06 J/g · K)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College Div
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY