Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 3CQ
FIGURE Q12.3 shows three rotating disks, all of equal mass. Rank in order, from largest to smallest, their rotational kinetic energies Kato Kc.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule02:13
Students have asked these similar questions
A 100 g disk with a diameter of 10 cm rotates about an axis through its center of mass with 0.2 J of rotational kinetic energy. What is the speed of a point on the rim of the disk?
A thin 155 g disk with a diameter of 8.50 cm rotates about an axis through its center with 0.260 J of kinetic energy. What is the speed (in m/s) of a point on the rim?
A thin, 90.0 g disk with a diameter of 6.00 cm rotates about an axis through its center with 0.240 J of kinetic energy. What is the speed of a point on the rim?
Chapter 12 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 12 - Prob. 1CQCh. 12 - If the angular velocity w is held constant, by...Ch. 12 - FIGURE Q12.3 shows three rotating disks, all of...Ch. 12 - 4. Must an object be rotating to have a moment of...Ch. 12 - 5. The moment of inertia of a uniform rod about an...Ch. 12 - 6. You have two solid steel spheres. Sphere 2 has...Ch. 12 - The professor hands you two spheres. They have the...Ch. 12 - Six forces are applied to the door in FIGURE...Ch. 12 - Prob. 9CQCh. 12 - Rank in order, from largest to smallest, the...
Ch. 12 - The solid cylinder and cylindrical shell in FIGURE...Ch. 12 - A diver in the pike position (legs straight, hands...Ch. 12 - Prob. 13CQCh. 12 - A high-speed drill reaches 2000 rpm in 0.50 s. a....Ch. 12 - A skater holds her arms outstretched as she spins...Ch. 12 - A ceiling fan with 80-cm-diameter blades is...Ch. 12 - An 18-cm-long bicycle crank arm, with a pedal at...Ch. 12 - Prob. 5EAPCh. 12 - The three masses shown in FIGURE EX12.6 are...Ch. 12 - The three masses shown in FIGURE EX12.7 are...Ch. 12 - A 100 g ball and a 200 g ball are connected by a...Ch. 12 - A thin, 100 g disk with a diameter of 8.0 cm...Ch. 12 - What is the rotational kinetic energy of the...Ch. 12 - The three200g masses in FIGURE EX12.11 are...Ch. 12 - A drum major twirls a 96-cm-long, 400 g baton...Ch. 12 - The four masses shown in FIGURE EX12.13 are...Ch. 12 - The four masses shown in FIGURE EXI2.13 are...Ch. 12 - The three masses shown in FIGURE EXI2.15 are...Ch. 12 - A 12-cm-diameter CD has a mass of 21 g. What is...Ch. 12 - A 25 kg solid door is 220 cm tall, 91 cm wide....Ch. 12 - Prob. 18EAPCh. 12 - In FIGURE EX12.19, what magnitude force provides...Ch. 12 - The 20-cm-diameter disk in FIGURE EX12.20 can...Ch. 12 - The axle in FIGURE EXI2.21 is half the distance...Ch. 12 - A 4.0-rn-long, 500 kg steel beam extends...Ch. 12 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 12 - An object’s moment of inertia is 2.0 kg m2. Its...Ch. 12 - An object whose moment of inertia is 4.0 kg m2...Ch. 12 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 12 - Starting from rest, a 12-cm-diameter compact disk...Ch. 12 - A 4.0 kg, 36-cm-diameter metal disk, initially at...Ch. 12 - The two objects in FIGURE EXI2.29 are balanced on...Ch. 12 - Prob. 30EAPCh. 12 - The 3.0-rn-long, 100 kg rigid beam of FIGURE...Ch. 12 - A 5.0 kg cat and a 2.0 kg bowl of tuna fish are at...Ch. 12 - A car tire is 60cm in diameter. The car is...Ch. 12 - A 500 g, 8.0-cm-diameter can is filled with...Ch. 12 - Prob. 35EAPCh. 12 - A solid sphere of radius R is placed at a height...Ch. 12 - Prob. 37EAPCh. 12 - Evaluate the cross products AB and CD .Ch. 12 - Prob. 39EAPCh. 12 - Force F=10j N is exerted on a particle at 5i+5j m....Ch. 12 - A 1.3 kg ball on the end of a lightweight rod is...Ch. 12 - What are the magnitude and direction of the...Ch. 12 - What is the angular momentum vector of the 2.0 kg,...Ch. 12 - Prob. 44EAPCh. 12 - Prob. 45EAPCh. 12 - A 2.0 kg, 20-cm-diameter turntable rotates at 100...Ch. 12 - Prob. 47EAPCh. 12 - A toy gyroscope has a ring of mass M and radius R...Ch. 12 - Prob. 49EAPCh. 12 - Prob. 50EAPCh. 12 - Determine the moment of inertia about the axis of...Ch. 12 - What is the moment of inertia of a 2.0 kg,...Ch. 12 - Calculate by direct integration the moment of...Ch. 12 - Calculate the moment of inertia of the rectangular...Ch. 12 - a. A disk of mass M and radius R has a hole of...Ch. 12 - Consider a solid cone of radius R, height H, and...Ch. 12 - Prob. 57EAPCh. 12 - A 3.0-m-long ladder, as shown in Figure 12.35....Ch. 12 - In FIGURE P12.59, an 80 kg construction worker...Ch. 12 - Prob. 60EAPCh. 12 - Prob. 61EAPCh. 12 - A 120-cm-wide sign hangs from a 5.0 kg,...Ch. 12 - Prob. 63EAPCh. 12 - Flywheels are large, massive wheels used to store...Ch. 12 - of mass m1and m2are connected by a massless string...Ch. 12 - The 2.0 kg, 30-cm-diameter disk in FIGURE P12.66...Ch. 12 - A 30-cm-diameter, 1.2 kg solid turntable rotates...Ch. 12 - Your engineering team has been assigned the task...Ch. 12 - A hollow sphere is rolling along a horizontal...Ch. 12 - A 750 g disk and a 760 g ring, both 15 cm in...Ch. 12 - A cylinder of radius R, length L. and mass M is...Ch. 12 - The 5.0 kg, 60-cm-diameter disk in FIGURE P12.72...Ch. 12 - A thin, uniform rod of length L and mass M is...Ch. 12 - A long, thin rod of mass M and length L is...Ch. 12 - The marble rolls down the track shown in FIGURE...Ch. 12 - sThe sphere of mass M and radius R in FIGURE...Ch. 12 - A satellite follows the elliptical orbit shown in...Ch. 12 - A 10 g bullet traveling at 400 m/s strikes a 10...Ch. 12 - A 200 g, 40-cm-diameter turntable rotates on...Ch. 12 - Luc, who is 1.80 m tall and weighs 950 N, is...Ch. 12 - A merry-go-round is a common piece of playground...Ch. 12 - A 45 kg figure skater is spinning on the toes of...Ch. 12 - Prob. 83EAPCh. 12 - The earth’s rotation axis, which is tilted 23.5...Ch. 12 - sThe bunchberry flower has the fastest-moving...Ch. 12 - The two blocks in FIGURE CP12.86 are connected by...Ch. 12 - A rod of length L and mass M has a nonuniform mass...Ch. 12 - In FIGURE CP12.88, a 200 g toy car is placed on a...Ch. 12 - Prob. 89EAPCh. 12 - A 75 g, 30-cm-long rod hangs vertically on a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What distinguishes the mass spectrum of 2,2-dimethylpropane from the mass spectra of pentane and isopentane?
Organic Chemistry (8th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
30. Drosophila has a diploid chromosome number of 2n = 8, which includes one pair of sex chromosomes (XX in fem...
Genetic Analysis: An Integrated Approach (3rd Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
The plane extending through each block diagram is called the__________
Applications and Investigations in Earth Science (9th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The axis of Earth makes a 23.5 angle with a direction perpendicular to the plane of Earth’s orbit. As shown below, this axis precesses, making one complete rotation in 25,780 y. (a) Calculate the change in angular momentum in half this time. (b) What is the average torque producing this change in angular momentum? (c) If this torque were created by a pair of forces acting at the most effective point on the equator, what would the magnitude of each force be?arrow_forwardA tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on a horizontal section of a track as shown in Figure P10.62. It rolls around the inside of a vertical circular loop of radius r = 45.0 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h = 20.0 cm below the horizontal section. (a) Find the balls speed at the top of the loop. (b) Demonstrate that the ball will not fall from the track at the top of the loop. (c) Find the balls speed as it leaves the track at the bottom. What If? (d) Suppose that static friction between ball and track were negligible so that the ball slid instead of rolling. Would its speed then be higher, lower, or the same at the top of the loop? (e) Explain your answer to part (d). Figure P10.62arrow_forward(a) Calculate the rotational kinetic energy of Earth on its axis. (b) What is the rotational kinetic energy of Earth in its orbit around the Sun?arrow_forward
- The blades of a wind turbine are 30 m in length and rotate at a maximum rotation rate of 20 rev/min. (a) If the blades are 6000 kg each and the rotor assembly has three blades, calculate the angular momentum of the turbine at this rotation rate. (b) What Is the torque require to rotate the blades up to the maximum rotation rate in 5 minutes?arrow_forwardA long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardA bug of mass 0.020 kg is at rest on the edge of a solid cylindrical disk (M=0.10kg,R=0.10m) rotating in a horizontal plane around the vertical axis through its center. The disk is rotating at 10.0 rad/s. The bug crawls to the center of the disk. (a) What is the new angular velocity of the disk? (b) What is the change in the kinetic energy of the system? (c) If the bug crawls back to the outer edge of the disk, what is the angular velocity of the disk then? (d) What is the new kinetic energy of the system? (e) What is the cause of the increase and decrease of kinetic energy?arrow_forward
- The puck in Figure P11.46 has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 40.0 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 15.0 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.) Figure P11.46arrow_forwardA tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on a horizontal section of a track as shown in Figure P10.33. It rolls around the inside of a vertical circular loop of radius r = 45.0 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h = 20.0 cm below the horizontal section. (a) Find the balls speed at the top of the loop. (b) Demonstrate that the ball will not fall from the track at the top of the loop. (c) Find the balls speed as it leaves the track at the bottom. (d) What If? Suppose that static friction between ball and track were negligible so that the ball slid instead of rolling. Describe the speed of the ball at the top of the loop in this situation. (e) Explain your answer to part (d). Figure P10.33arrow_forwardA. Similar bars as shown are translating and/or rotating with the given linear and angular speeds. Which bar has the greatest amount of kinetic energy? B. Similar bars as shown are translating and/or rotating with the given linear and angular speeds. Which bar has the least amount of kinetic energy?arrow_forward
- Many machines employ cams for various purposes, such as opening and closing valves. In Figure P10.46, the cam is a circular disk of radius R with a hole of diameter R cut through it. As shown in the figure, the hole does not pass through the center of the disk. The cam with the hole cut out has mass M. The cam is mounted on a uniform, solid, cylindrical shaft of diameter R and also of mass M. What is the kinetic energy of the cam-shaft combination when it is rotating with angular speed ω about the shaft’s axis?arrow_forwardTab sLk A printing press has a roller 17 inches in diameter. A point on the roller's surface moves at a speed of 85 feet per second. What is the roller's angular speed? The roller's angular speed is radians per second. (Round your answer to the nearest hundredth.) Esc I 1 Q A 91°F Sunny 261 N @ 2 W S Alt X 3E D C STR 4 F C FS do 5 % T V OL G 6 B F7 H W & 7 P U N J 8 +00 8 F9 1 k M F10 ( 9 K O V LO F11 O L P All + 99+ F12 . V Parrow_forwardQuestion 8. A flywheel is a solid disk that rotates about an axis that is perpendicular to the disk at its center. Rotating flywheels provide a means for storing energy in the form of rotational kinetic energy and are being considered as a possible alternative to batteries in electric cars. The gasoline burned in a 414-mile trip in a typical midsize car produces about 1.32 × 109 J of energy. How fast would a 44.1-kg flywheel with a radius of 0.304 m have to rotate to store this much energy? Give your answer in rev/min. Ans: 343712.61 rev/minarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY