![Physics of Everyday Phenomena](https://www.bartleby.com/isbn_cover_images/9781260048469/9781260048469_largeCoverImage.jpg)
Physics of Everyday Phenomena
9th Edition
ISBN: 9781260048469
Author: Griffith
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 39CQ
To determine
Why it is better to comb with a wet comb while combing hair on a dry hair.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…
How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.
Chapter 12 Solutions
Physics of Everyday Phenomena
Ch. 12 - When two different materials are rubbed together,...Ch. 12 - Two pith balls are both charged by contact with a...Ch. 12 - When a glass rod is rubbed by a nylon cloth, which...Ch. 12 - Two pith balls are charged by touching one to a...Ch. 12 - Do the two metal-foil leaves of an electroscope...Ch. 12 - If you charge an electroscope with a plastic rod...Ch. 12 - When you comb your hair with a plastic comb, what...Ch. 12 - Describe how Benjamin Franklins single-fluid model...Ch. 12 - If you touch the metal ball of a charged...Ch. 12 - If you touch the ball of a charged electroscope...
Ch. 12 - When a metal ball is charged by induction using a...Ch. 12 - If, when charging by induction, you remove the...Ch. 12 - Will bits of paper be attracted to a charged rod...Ch. 12 - Why are pith balls initially attracted to a...Ch. 12 - Are electrostatic precipitators (see everyday...Ch. 12 - Can the pollutant carbon dioxide be readily...Ch. 12 - Can scrubbers (see everyday phenomenon box 12.1)...Ch. 12 - Is the concept of torque involved in the operation...Ch. 12 - If you had several identical metal balls mounted...Ch. 12 - If the distance between two charged objects is...Ch. 12 - If two charges are both doubled in magnitude...Ch. 12 - Can both the electrostatic force and the...Ch. 12 - Two charges, of equal magnitude but opposite sign,...Ch. 12 - Is it possible for an electric field to exist at...Ch. 12 - If we change the negative charge in the diagram...Ch. 12 - Three equal positive charges are located at the...Ch. 12 - Is the electric field produced by a single...Ch. 12 - If we move a positive charge toward a negative...Ch. 12 - Prob. 29CQCh. 12 - If a negative charge is moved in the same...Ch. 12 - Prob. 31CQCh. 12 - Is electric potential the same as electric...Ch. 12 - Prob. 33CQCh. 12 - Prob. 34CQCh. 12 - Would you be more likely to be struck by lightning...Ch. 12 - During a thunderstorm, why can a much greater flow...Ch. 12 - If in a typical thundercloud the bottom of the...Ch. 12 - Which is better during a thunderstorm: being in...Ch. 12 - Prob. 39CQCh. 12 - An electron has a charge of 1.6 1019 C. How many...Ch. 12 - Two identical brass balls mounted on wooden posts...Ch. 12 - Two identical steel balls mounted on wooden posts...Ch. 12 - Two charged particles exert an electrostatic force...Ch. 12 - Two charged particles exert an electrostatic force...Ch. 12 - Two negative charges, each of magnitude 5 106 C,...Ch. 12 - A charge of +3 106 C is located 21 cm from a...Ch. 12 - An electron and a proton have charges of an equal...Ch. 12 - A uniform electric field is directed upward and...Ch. 12 - A test charge of +12 106 C experiences a downward...Ch. 12 - A +3.4 106 C test charge experiences forces from...Ch. 12 - A charge of 5.8 106 C is placed at a point in...Ch. 12 - A charge of +0.18 C is moved from a position where...Ch. 12 - Prob. 14ECh. 12 - The potential energy of a +8 106 C charge...Ch. 12 - The electric potential increases from 52 V to 367...Ch. 12 - Three positive charges are located along a line,...Ch. 12 - Suppose that two equal positive charges lie near...Ch. 12 - Suppose that one of the two charges in synthesis...Ch. 12 - Suppose that four equal positive charges are...Ch. 12 - Suppose that the top plate of a parallel-plate...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Hello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forwardWhich of the following laws is true regarding tensile strength? • tensile strength T ①Fbreak = Wtfest Piece thickness rate (mm) ②T = test piece width rabe (mm) Fbreak break watarrow_forward
- No chatgpt plsarrow_forwardNo chatgpt plsarrow_forwardYou hold a spherical salad bowl 85 cm in front of your face with the bottom of the bowl facing you. The salad bowl is made of polished metal with a 40 cm radius of curvature. Where is the image of your 2.0 cm tall nose located? What is image's size, orientation, and nature. I keep getting the answer -26.2, but it keeps saying it is wrong. I just want to know what i'm doing wrong.arrow_forward
- A converging lens with a focal length of 6.70 cm forms an image of a 4.60 mm tall real object that is to the left of the lens. The image is 1.50 cm tall and erect. Where are the object and image located? Is the image real or virtual? Please show all stepsarrow_forwardNo chatgpt pls will upvotearrow_forwardneed help part earrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY