Concept explainers
Suppose that the top plate of a parallel-plate capacitor has an electric potential of 0 V and the bottom plate has a potential of 500 V. There is a distance of 1.3 cm between the plates.
a. What is the change in potential energy of a charge of +6 × 10–4 C that is moved from the bottom plate to the top plate?
b. What is the direction of the electrostatic force exerted on this charge when it is between the plates?
c. What is the direction of the electric field between the plates?
d. What is the magnitude of the electric field between the plates?
(a)
The change in potential energy of the charge, when the charge is moved from bottom plate to top plate.
Answer to Problem 5SP
The change in potential energy of the charge, when the charge is moved from bottom plate to top plate is
Explanation of Solution
Given Info: The charge is
Write the expression to find the charge in potential energy of the charge.
Here,
Re-write the above equation using initial and final electric potential values.
Here,
Substitute
Conclusion:
The change in potential energy of the charge, when the charge is moved from bottom plate to top plate is
(b)
The direction of the electrostatic force on the charge when it is in between the plates.
Answer to Problem 5SP
The direction of the electrostatic force on the charge when it is between the plates is towards the top plate.
Explanation of Solution
Given Info: The charge is
In the parallel plate capacitor, the direction of the electric field will be in the direction form higher potential to the lower potential. Here, the bottom plate is higher potential and the top plate is lower potential.
Since, the charge is a positive charge; the electrostatic force exerted on the charge will be in the same direction of electric field. Thus, the direction of the electrostatic force on the charge when it is between the plates is towards the top plate.
Conclusion:
The direction of the electrostatic force on the charge when it is between the plates is towards the top plate.
(c)
The direction of the electric field between the plates.
Answer to Problem 5SP
The direction of the electric filed will be form bottom plate to top plate.
Explanation of Solution
Given Info: The charge is
In the parallel plate capacitor, the direction of the electric field will be in the direction form higher potential to the lower potential.
Here, the bottom plate is higher potential and the top plate is lower potential. Thus, the direction of the electric filed will be form bottom plate to top plate.
Conclusion:
The direction of the electric filed will be form bottom plate to top plate.
(d)
The value of magnitude of the electric field between the plates.
Answer to Problem 5SP
The value of magnitude of the electric field between the plates is
Explanation of Solution
Given Info: The charge is
Write the expression to find the electric field.
Here,
d is the distance between the plates
Substitute
Conclusion:
The value of magnitude of the electric field between the plates is
Want to see more full solutions like this?
Chapter 12 Solutions
Physics of Everyday Phenomena
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.arrow_forwardHelp me make a visualize experimental setup using a word document. For the theory below.arrow_forwardHow to solve this, given answerarrow_forward
- Three point-like charges are placed at the corners of a square as shown in the figure, 28.0 cm on each side. Find the minimum amount of work required by an external force to move the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.arrow_forwardA point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x= 0.820 mm . Find the magnitude and direction of the electric field at each of the following points on the x axis. x2 = 19.0 cmarrow_forwardFour point-like charges are placed as shown in the figure, three of them are at the corners and one at the center of a square, 36.0 cm on each side. What is the electric potential at the empty corner? Let q1=q3=+26.0 µС, q2=-28.0 μC, and q4=-48.0μc Varrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College