DIFFERENTIAL EQUATIONS W/WILEYPLUS
DIFFERENTIAL EQUATIONS W/WILEYPLUS
3rd Edition
ISBN: 9781119764618
Author: BRANNAN
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1.2, Problem 36P

A pond forms as water collects in a conical depression of radius a and depth h . Suppose that water flows in at a constant rate k and is lost through evaporation at a rate proportional to the surface area.

Show that the volume V ( t ) of water in the pond at time t satisfies the differential equation

d V d t = k α π ( 3 α π h ) 2 / 3 V 2 / 3 ,

Where α is the coefficient of evaporation.

Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically stable?

Find a condition that must be satisfied if the pond is not to overflow.

Blurred answer
Students have asked these similar questions
Q1) Classify the following statements as a true or false statements a. Any ring with identity is a finitely generated right R module.- b. An ideal 22 is small ideal in Z c. A nontrivial direct summand of a module cannot be large or small submodule d. The sum of a finite family of small submodules of a module M is small in M A module M 0 is called directly indecomposable if and only if 0 and M are the only direct summands of M f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct- summand in M & Z₂ contains no minimal submodules h. Qz is a finitely generated module i. Every divisible Z-module is injective j. Every free module is a projective module Q4) Give an example and explain your claim in each case a) A module M which has two composition senes 7 b) A free subset of a modale c) A free module 24 d) A module contains a direct summand submodule 7, e) A short exact sequence of modules 74.
************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.
Prove that Σ prime p≤x p=3 (mod 10) 1 Ρ = for some constant A. log log x + A+O 1 log x "

Chapter 1 Solutions

DIFFERENTIAL EQUATIONS W/WILEYPLUS

Ch. 1.1 - Mixing Problems. Many physical systems can be cast...Ch. 1.1 - Mixing Problems. Many physical systems can be cast...Ch. 1.1 - Pharmacokinetics. A simple model for the...Ch. 1.1 - A certain drug is being administered intravenously...Ch. 1.1 - Continuously Compounded Interest. The amount of...Ch. 1.1 - Continuously Compounded Interest. The amount of...Ch. 1.1 - Continuously Compounded Interest. The amount of...Ch. 1.1 - Continuously Compounded Interest. The amount of...Ch. 1.1 - A spherical raindrop evaporates at a rate...Ch. 1.1 - Prob. 20PCh. 1.2 - Phase Line Diagrams. Problems through involve...Ch. 1.2 - Phase Line Diagrams. Problems 1 through 7 involve...Ch. 1.2 - Phase Line Diagrams. Problems through involve...Ch. 1.2 - Phase Line Diagrams. Problems 1 through 7 involve...Ch. 1.2 - Phase Line Diagrams. Problems through involve...Ch. 1.2 - Phase Line Diagrams. Problems 1 through 7 involve...Ch. 1.2 - Phase Line Diagrams. Problems through involve...Ch. 1.2 - Problems 8 through 13 involve equations of the...Ch. 1.2 - Problems 8 through 13 involve equations of the...Ch. 1.2 - Problems 8 through 13 involve equations of the...Ch. 1.2 - Problems 8 through 13 involve equations of the...Ch. 1.2 - Problems 8 through 13 involve equations of the...Ch. 1.2 - Problems through involve equations of the form ....Ch. 1.2 - Direction Fields. In each of problems 14 through...Ch. 1.2 - Direction Fields. In each of problems through...Ch. 1.2 - Direction Fields. In each of problems 14 through...Ch. 1.2 - Direction Fields. In each of problems through...Ch. 1.2 - Direction Fields. In each of problems 14 through...Ch. 1.2 - Direction Fields. In each of problems through...Ch. 1.2 - In each of problems through draw a direction...Ch. 1.2 - In each of problems 20 through 23 draw a direction...Ch. 1.2 - In each of problems through draw a direction...Ch. 1.2 - In each of problems through draw a direction...Ch. 1.2 - Consider the following list of differential...Ch. 1.2 - Consider the following list of differential...Ch. 1.2 - Consider the following list of differential...Ch. 1.2 - Consider the following list of differential...Ch. 1.2 - Consider the following list of differential...Ch. 1.2 - Consider the following list of differential...Ch. 1.2 - Verify that the function in Eq.(11) is a solution...Ch. 1.2 - Show that Asint+Bcost=Rsin(t), where R=A2+B2 and ...Ch. 1.2 - If in the exponential model for population growth,...Ch. 1.2 - An equation that is frequently used to model the...Ch. 1.2 - In addition to the Gompertz equation (see Problem...Ch. 1.2 - A chemical of fixed concentration flows into a...Ch. 1.2 - A pond forms as water collects in a conical...Ch. 1.2 - The Solow model of economic growth (ignoring the...Ch. 1.3 - In each of Problems through , determine the order...Ch. 1.3 - In each of Problems 1 through 6, determine the...Ch. 1.3 - In each of Problems 1 through 6, determine the...Ch. 1.3 - In each of Problems through , determine the order...Ch. 1.3 - In each of Problems through , determine the order...Ch. 1.3 - In each of Problems through , determine the order...Ch. 1.3 - Show that Eq. (10) can be matched to each equation...Ch. 1.3 - Show that Eq. (10) can be matched to each equation...Ch. 1.3 - Show that Eq. (10) can be matched to each equation...Ch. 1.3 - Show that Eq. (10) can be matched to each equation...Ch. 1.3 - Show that Eq. (10) can be matched to each equation...Ch. 1.3 - Show that Eq. (10) can be matched to each equation...Ch. 1.3 - In each of Problems 13 through 20, verify that...Ch. 1.3 - In each of Problems through , verify that each...Ch. 1.3 - In each of Problems through , verify that each...Ch. 1.3 - In each of Problems 13 through 20, verify that...Ch. 1.3 - In each of Problems 13 through 20, verify that...Ch. 1.3 - In each of Problems through , verify that each...Ch. 1.3 - In each of Problems 13 through 20, verify that...Ch. 1.3 - In each of Problems through , verify that each...Ch. 1.3 - In each of Problems 21 through 24, determine the...Ch. 1.3 - In each of Problems through , determine the...Ch. 1.3 - In each of Problems through , determine the...Ch. 1.3 - In each of Problems 21 through 24, determine the...Ch. 1.3 - In each of Problems 25 and 26, determine the...Ch. 1.3 - In each of Problems 25 and 26, determine the...Ch. 1.3 - In Problems 27 through 31, verify that y(t)...Ch. 1.3 - In Problems through , verify that satisfies the...Ch. 1.3 - In Problems through , verify that satisfies the...Ch. 1.3 - In Problems 27 through 31, verify that y(t)...Ch. 1.3 - In Problems through , verify that satisfies the...Ch. 1.3 - Verify that the function (t)=c1et+c2e2t is a...Ch. 1.3 - Verify that the function is a solution of the...Ch. 1.3 - Verify that the function (t)=c1etcos2t+c2etsin2t...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Text book image
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Text book image
Calculus Volume 1
Math
ISBN:9781938168024
Author:Strang, Gilbert
Publisher:OpenStax College
Text book image
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Text book image
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY