EBK EXCURSIONS IN MODERN MATHEMATICS
EBK EXCURSIONS IN MODERN MATHEMATICS
9th Edition
ISBN: 8220103632034
Author: Tannenbaum
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 32E

Exercises 31 through 34 refer to a variation of the chaos game. In this game you start with a square ABCD with sides of length 27 as shown in Fig. 12-41 and a fair die that you will roll many times. When you roll a 1, choose vertex A; when you roll a 2, choose vertex B; when you roll a 3, choose vertex C; and when you roll a 4 choose vertex D. (When you roll a 5 or a 6, disregard the roll and roll again.) A sequence of rolls will generate a sequence of points P 1 , P 2 , P 3 | e l i p | inside or on the boundary of the square according to the following rules.

Start. Roll the die. Mark the chosen vertex and call it P 1

Step 1. Roll the die again. From P 1 move two-thirds of the way toward the new chosen vertex. Mark this point and call it P 2 .

Steps 2, 3, etc. Each time you roll the die, mark the point two-thirds of the way between the previous point and the chosen vertex.

Chapter 12, Problem 32E, Exercises 31 through 34 refer to a variation of the chaos game. In this game you start with a square

Figure 12-41

Using graph paper, find the points P 1 , P 2 , P 3 and P 4 corresponding to

a. the sequence of rolls 2, 2, 4, 4.

b. the sequence of rolls 2, 3, 4, 1.

c. the sequence of rolls 1, 3, 4, 1.

Blurred answer
Students have asked these similar questions
7. Show that for R sufficiently large, the polynomial P(z) in Example 3, Sec. 5, satisfies the inequality |P(z)| R. Suggestion: Observe that there is a positive number R such that the modulus of each quotient in inequality (9), Sec. 5, is less than |an|/n when |z| > R.
9. Establish the identity 1- 1+z+z² + 2n+1 ... +z" = 1- z (z1) and then use it to derive Lagrange's trigonometric identity: 1 1+ cos cos 20 +... + cos no = + 2 sin[(2n+1)0/2] 2 sin(0/2) (0 < 0 < 2л). Suggestion: As for the first identity, write S = 1+z+z² +...+z" and consider the difference S - zS. To derive the second identity, write z = eie in the first one.
8. Prove that two nonzero complex numbers z₁ and Z2 have the same moduli if and only if there are complex numbers c₁ and c₂ such that Z₁ = c₁C2 and Z2 = c1c2. Suggestion: Note that (i≤ exp (101+0) exp (01-02) and [see Exercise 2(b)] 2 02 Ꮎ - = = exp(i01) exp(101+0) exp (i 01 - 02 ) = exp(102). i 2 2

Chapter 12 Solutions

EBK EXCURSIONS IN MODERN MATHEMATICS

Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Find number of persons in a part with 66 handshakes Combinations; Author: Anil Kumar;https://www.youtube.com/watch?v=33TgLi-wp3E;License: Standard YouTube License, CC-BY
Discrete Math 6.3.1 Permutations and Combinations; Author: Kimberly Brehm;https://www.youtube.com/watch?v=J1m9sB5XZQc;License: Standard YouTube License, CC-BY
How to use permutations and combinations; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=NEGxh_D7yKU;License: Standard YouTube License, CC-BY
Permutations and Combinations | Counting | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=0NAASclUm4k;License: Standard Youtube License
Permutations and Combinations Tutorial; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=XJnIdRXUi7A;License: Standard YouTube License, CC-BY