![Conceptual Physical Science Explorations](https://www.bartleby.com/isbn_cover_images/9780321567918/9780321567918_largeCoverImage.gif)
Concept explainers
A fire engine sounds its siren as it approaches you. Rank the Doppler effect you hear from highest to lowest frequency.
![Check Mark](/static/check-mark.png)
The ranking of the Doppler effect for greatest to least frequency.
Answer to Problem 2TC
The Doppler effect of the case (d) is greatest, followed by Doppler effect of case (b) and case (a) and the Doppler effect of the case (c) is least.
Explanation of Solution
The variation in the frequency of the sound due to the source's motion, receiver, or both is called the Doppler effect. The variation in the frequency depends on the relative separation of the source and receiver. If the source and receiver move away from each other, then the Doppler effect decrease and if the source and receiver move toward each other, then the Doppler effect increase.
The speed of the fire engine in case (a) is
The speed of the fire engine in case (b) is
The speed of the fire engine in case (c) is
The speed of the fire engine in case (d) is
Doppler effect varies with separation between the source and receiver. The separation between source and receiver decrease with increase in speed of the source toward receiver. The faster is the separation reduces higher is the Doppler effect.
The fire engine in the case (d) is moving toward you with highest speed, so the separation between you and siren of fire engine decreases with highest speed. The Doppler effect is greatest when the engine moves toward you with speed
The Doppler effect is least for the case (c) because the separation between the siren and you decrease with least speed of
The Doppler effect of the case (b) follows the greatest Doppler effect as the fire engine moves toward you with speed .
The Doppler effect of the case (a) follows the case (b) as the separation between you and fire engine decreases with speed
Conclusion:
Therefore, the Doppler effect of the case (d) is greatest, followed by Doppler effect of case (b) and case (a) and the Doppler effect of the case (c) is least.
Chapter 12 Solutions
Conceptual Physical Science Explorations
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Campbell Essential Biology with Physiology (5th Edition)
Anatomy & Physiology (6th Edition)
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forward
- When the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forwardThe car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)