Concept explainers
(a)
To find: The fitted data and the residuals. Also, generate the
(a)
Answer to Problem 22E
Solution: The residuals of the provided data is scattered symmetrically above and below the zero and there is no extreme outlier.
Explanation of Solution
Given: The data provided in the Facebook friends study as,
Friends | Participant | Score |
102 | 1 | 3.8 |
102 | 2 | 3.6 |
102 | 3 | 3.2 |
102 | 4 | 2.4 |
102 | 5 | 4.8 |
102 | 6 | 3.0 |
102 | 7 | 4.2 |
102 | 8 | 3.6 |
102 | 9 | 3.2 |
102 | 10 | 3.0 |
102 | 11 | 4.8 |
102 | 12 | 3.4 |
102 | 13 | 4.8 |
102 | 14 | 3.0 |
102 | 15 | 4.6 |
102 | 16 | 2.8 |
102 | 17 | 6.0 |
102 | 18 | 2.8 |
102 | 19 | 5.2 |
102 | 20 | 3.2 |
102 | 21 | 4.2 |
102 | 22 | 2.2 |
102 | 23 | 5.0 |
102 | 24 | 4.8 |
302 | 25 | 5.0 |
302 | 26 | 5.2 |
302 | 27 | 5.6 |
302 | 28 | 2.6 |
302 | 29 | 3.8 |
302 | 30 | 4.8 |
302 | 31 | 5.6 |
302 | 32 | 4.8 |
302 | 33 | 6.4 |
302 | 34 | 4.8 |
302 | 35 | 4.4 |
302 | 36 | 6.0 |
302 | 37 | 3.8 |
302 | 38 | 4.8 |
302 | 39 | 4.6 |
302 | 40 | 6.0 |
302 | 41 | 5.0 |
302 | 42 | 3.0 |
302 | 43 | 4.4 |
302 | 44 | 5.4 |
302 | 45 | 5.4 |
302 | 46 | 4.6 |
302 | 47 | 5.6 |
302 | 48 | 5.8 |
302 | 49 | 4.2 |
302 | 50 | 4.8 |
302 | 51 | 5.0 |
302 | 52 | 5.2 |
302 | 53 | 4.2 |
302 | 54 | 5.0 |
302 | 55 | 5.8 |
302 | 56 | 5.6 |
302 | 57 | 3.8 |
502 | 58 | 4.6 |
502 | 59 | 4.0 |
502 | 60 | 4.8 |
502 | 61 | 3.0 |
502 | 62 | 2.0 |
502 | 63 | 5.8 |
502 | 64 | 5.6 |
502 | 65 | 4.4 |
502 | 66 | 4.4 |
502 | 67 | 5.6 |
502 | 68 | 4.6 |
502 | 69 | 5.6 |
502 | 70 | 3.0 |
502 | 71 | 5.6 |
502 | 72 | 3.6 |
502 | 73 | 6.8 |
502 | 74 | 3.2 |
502 | 75 | 4.8 |
502 | 76 | 4.6 |
502 | 77 | 5.4 |
502 | 78 | 4.8 |
502 | 79 | 4.8 |
502 | 80 | 5.4 |
502 | 81 | 3.6 |
502 | 82 | 4.8 |
502 | 83 | 3.8 |
702 | 84 | 3.2 |
702 | 85 | 3.6 |
702 | 86 | 5.8 |
702 | 87 | 1.2 |
702 | 88 | 3.8 |
702 | 89 | 5.4 |
702 | 90 | 3.6 |
702 | 91 | 3.4 |
702 | 92 | 5.0 |
702 | 93 | 5.2 |
702 | 94 | 3.6 |
702 | 95 | 2.6 |
702 | 96 | 7.0 |
702 | 97 | 4.4 |
702 | 98 | 4.8 |
702 | 99 | 5.2 |
702 | 100 | 5.4 |
702 | 101 | 3.6 |
702 | 102 | 1.0 |
702 | 103 | 5.0 |
702 | 104 | 5.0 |
702 | 105 | 6.0 |
702 | 106 | 4.2 |
702 | 107 | 5.8 |
702 | 108 | 3.2 |
702 | 109 | 5.4 |
702 | 110 | 6.4 |
702 | 111 | 4.4 |
702 | 112 | 3.0 |
702 | 113 | 6.0 |
902 | 114 | 4.2 |
902 | 115 | 4.6 |
902 | 116 | 3.0 |
902 | 117 | 2.6 |
902 | 118 | 5.2 |
902 | 119 | 5.2 |
902 | 120 | 1.6 |
902 | 121 | 5.0 |
902 | 122 | 4.4 |
902 | 123 | 5.0 |
902 | 124 | 3.6 |
902 | 125 | 4.2 |
902 | 126 | 5.0 |
902 | 127 | 3.4 |
902 | 128 | 3.6 |
902 | 129 | 5.0 |
902 | 130 | 3.2 |
902 | 131 | 2.4 |
902 | 132 | 4.8 |
902 | 133 | 3.6 |
902 | 134 | 4.2 |
Calculation:
Use Minitab to find the residuals, of the provided data as below:
Step1: Enter the provided data in the worksheet.
Step2: Select stat >ANOVA>one-way analysis of variance.
Step3: Select Score in the Response and Friends in the Factor.
Step4: Click on Graphs and select the Residual verses fitand then press OK.
Step5: Select Store residual and Store fit.
Step6: Press OK.
Theobtained output of fitted data and the residual stored in the data file as below:
Friends | Participant | Score | RESI1 | FITS1 |
102 | 1 | 3.8 | -0.01667 | 3.816667 |
102 | 2 | 3.6 | -0.21667 | 3.816667 |
102 | 3 | 3.2 | -0.61667 | 3.816667 |
102 | 4 | 2.4 | -1.41667 | 3.816667 |
102 | 5 | 4.8 | 0.983333 | 3.816667 |
102 | 6 | 3.0 | -0.81667 | 3.816667 |
102 | 7 | 4.2 | 0.383333 | 3.816667 |
102 | 8 | 3.6 | -0.21667 | 3.816667 |
102 | 9 | 3.2 | -0.61667 | 3.816667 |
102 | 10 | 3.0 | -0.81667 | 3.816667 |
102 | 11 | 4.8 | 0.983333 | 3.816667 |
102 | 12 | 3.4 | -0.41667 | 3.816667 |
102 | 13 | 4.8 | 0.983333 | 3.816667 |
102 | 14 | 3.0 | -0.81667 | 3.816667 |
102 | 15 | 4.6 | 0.783333 | 3.816667 |
102 | 16 | 2.8 | -1.01667 | 3.816667 |
102 | 17 | 6.0 | 2.183333 | 3.816667 |
102 | 18 | 2.8 | -1.01667 | 3.816667 |
102 | 19 | 5.2 | 1.383333 | 3.816667 |
102 | 20 | 3.2 | -0.61667 | 3.816667 |
102 | 21 | 4.2 | 0.383333 | 3.816667 |
102 | 22 | 2.2 | -1.61667 | 3.816667 |
102 | 23 | 5.0 | 1.183333 | 3.816667 |
102 | 24 | 4.8 | 0.983333 | 3.816667 |
302 | 25 | 5.0 | 0.121212 | 4.878788 |
302 | 26 | 5.2 | 0.321212 | 4.878788 |
302 | 27 | 5.6 | 0.721212 | 4.878788 |
302 | 28 | 2.6 | -2.27879 | 4.878788 |
302 | 29 | 3.8 | -1.07879 | 4.878788 |
302 | 30 | 4.8 | -0.07879 | 4.878788 |
302 | 31 | 5.6 | 0.721212 | 4.878788 |
302 | 32 | 4.8 | -0.07879 | 4.878788 |
302 | 33 | 6.4 | 1.521212 | 4.878788 |
302 | 34 | 4.8 | -0.07879 | 4.878788 |
302 | 35 | 4.4 | -0.47879 | 4.878788 |
302 | 36 | 6.0 | 1.121212 | 4.878788 |
302 | 37 | 3.8 | -1.07879 | 4.878788 |
302 | 38 | 4.8 | -0.07879 | 4.878788 |
302 | 39 | 4.6 | -0.27879 | 4.878788 |
302 | 40 | 6.0 | 1.121212 | 4.878788 |
302 | 41 | 5.0 | 0.121212 | 4.878788 |
302 | 42 | 3.0 | -1.87879 | 4.878788 |
302 | 43 | 4.4 | -0.47879 | 4.878788 |
302 | 44 | 5.4 | 0.521212 | 4.878788 |
302 | 45 | 5.4 | 0.521212 | 4.878788 |
302 | 46 | 4.6 | -0.27879 | 4.878788 |
302 | 47 | 5.6 | 0.721212 | 4.878788 |
302 | 48 | 5.8 | 0.921212 | 4.878788 |
302 | 49 | 4.2 | -0.67879 | 4.878788 |
302 | 50 | 4.8 | -0.07879 | 4.878788 |
302 | 51 | 5.0 | 0.121212 | 4.878788 |
302 | 52 | 5.2 | 0.321212 | 4.878788 |
302 | 53 | 4.2 | -0.67879 | 4.878788 |
302 | 54 | 5.0 | 0.121212 | 4.878788 |
302 | 55 | 5.8 | 0.921212 | 4.878788 |
302 | 56 | 5.6 | 0.721212 | 4.878788 |
302 | 57 | 3.8 | -1.07879 | 4.878788 |
502 | 58 | 4.6 | 0.038462 | 4.561538 |
502 | 59 | 4.0 | -0.56154 | 4.561538 |
502 | 60 | 4.8 | 0.238462 | 4.561538 |
502 | 61 | 3.0 | -1.56154 | 4.561538 |
502 | 62 | 2.0 | -2.56154 | 4.561538 |
502 | 63 | 5.8 | 1.238462 | 4.561538 |
502 | 64 | 5.6 | 1.038462 | 4.561538 |
502 | 65 | 4.4 | -0.16154 | 4.561538 |
502 | 66 | 4.4 | -0.16154 | 4.561538 |
502 | 67 | 5.6 | 1.038462 | 4.561538 |
502 | 68 | 4.6 | 0.038462 | 4.561538 |
502 | 69 | 5.6 | 1.038462 | 4.561538 |
502 | 70 | 3.0 | -1.56154 | 4.561538 |
502 | 71 | 5.6 | 1.038462 | 4.561538 |
502 | 72 | 3.6 | -0.96154 | 4.561538 |
502 | 73 | 6.8 | 2.238462 | 4.561538 |
502 | 74 | 3.2 | -1.36154 | 4.561538 |
502 | 75 | 4.8 | 0.238462 | 4.561538 |
502 | 76 | 4.6 | 0.038462 | 4.561538 |
502 | 77 | 5.4 | 0.838462 | 4.561538 |
502 | 78 | 4.8 | 0.238462 | 4.561538 |
502 | 79 | 4.8 | 0.238462 | 4.561538 |
502 | 80 | 5.4 | 0.838462 | 4.561538 |
502 | 81 | 3.6 | -0.96154 | 4.561538 |
502 | 82 | 4.8 | 0.238462 | 4.561538 |
502 | 83 | 3.8 | -0.76154 | 4.561538 |
702 | 84 | 3.2 | -1.20667 | 4.406667 |
702 | 85 | 3.6 | -0.80667 | 4.406667 |
702 | 86 | 5.8 | 1.393333 | 4.406667 |
702 | 87 | 1.2 | -3.20667 | 4.406667 |
702 | 88 | 3.8 | -0.60667 | 4.406667 |
702 | 89 | 5.4 | 0.993333 | 4.406667 |
702 | 90 | 3.6 | -0.80667 | 4.406667 |
702 | 91 | 3.4 | -1.00667 | 4.406667 |
702 | 92 | 5.0 | 0.593333 | 4.406667 |
702 | 93 | 5.2 | 0.793333 | 4.406667 |
702 | 94 | 3.6 | -0.80667 | 4.406667 |
702 | 95 | 2.6 | -1.80667 | 4.406667 |
702 | 96 | 7.0 | 2.593333 | 4.406667 |
702 | 97 | 4.4 | -0.00667 | 4.406667 |
702 | 98 | 4.8 | 0.393333 | 4.406667 |
702 | 99 | 5.2 | 0.793333 | 4.406667 |
702 | 100 | 5.4 | 0.993333 | 4.406667 |
702 | 101 | 3.6 | -0.80667 | 4.406667 |
702 | 102 | 1.0 | -3.40667 | 4.406667 |
702 | 103 | 5.0 | 0.593333 | 4.406667 |
702 | 104 | 5.0 | 0.593333 | 4.406667 |
702 | 105 | 6.0 | 1.593333 | 4.406667 |
702 | 106 | 4.2 | -0.20667 | 4.406667 |
702 | 107 | 5.8 | 1.393333 | 4.406667 |
702 | 108 | 3.2 | -1.20667 | 4.406667 |
702 | 109 | 5.4 | 0.993333 | 4.406667 |
702 | 110 | 6.4 | 1.993333 | 4.406667 |
702 | 111 | 4.4 | -0.00667 | 4.406667 |
702 | 112 | 3.0 | -1.40667 | 4.406667 |
702 | 113 | 6.0 | 1.593333 | 4.406667 |
902 | 114 | 4.2 | 0.209524 | 3.990476 |
902 | 115 | 4.6 | 0.609524 | 3.990476 |
902 | 116 | 3.0 | -0.99048 | 3.990476 |
902 | 117 | 2.6 | -1.39048 | 3.990476 |
902 | 118 | 5.2 | 1.209524 | 3.990476 |
902 | 119 | 5.2 | 1.209524 | 3.990476 |
902 | 120 | 1.6 | -2.39048 | 3.990476 |
902 | 121 | 5.0 | 1.009524 | 3.990476 |
902 | 122 | 4.4 | 0.409524 | 3.990476 |
902 | 123 | 5.0 | 1.009524 | 3.990476 |
902 | 124 | 3.6 | -0.39048 | 3.990476 |
902 | 125 | 4.2 | 0.209524 | 3.990476 |
902 | 126 | 5.0 | 1.009524 | 3.990476 |
902 | 127 | 3.4 | -0.59048 | 3.990476 |
902 | 128 | 3.6 | -0.39048 | 3.990476 |
902 | 129 | 5.0 | 1.009524 | 3.990476 |
902 | 130 | 3.2 | -0.79048 | 3.990476 |
902 | 131 | 2.4 | -1.59048 | 3.990476 |
902 | 132 | 4.8 | 0.809524 | 3.990476 |
902 | 133 | 3.6 | -0.39048 | 3.990476 |
902 | 134 | 4.2 | 0.209524 | 3.990476 |
The scatterplot of the residuals versus the group variable is,
Interpretation: From the above graph, it is observed that the scatter plot of the residuals is symmetrically scattered below and above the zero and there are two outliers below the zero but these are not the extreme outliers.
(b)
Whether the spread of the residual of each group is relatively equal or not.
(b)
Answer to Problem 22E
Solution: Yes, the spread of the residual of each group is relatively equal.
Explanation of Solution
From the scatterplot of the residuals versus the group variables in part (a), it is observed that the residuals are symmetrically scattered below and above the zero. It implies that the spread of the residual of each group is relatively equal.
(c)
To graph: The Normal quantile plot of the residuals obtained in part (a) and identify whether it is normal or not.
(c)
Explanation of Solution
Graph:
Use Minitab to graph the Normal quantile plot as below:
Step1: Enter the provided data in the worksheet.
Step2: Select stat> ANOVA>one-way analysis of variance.
Step3: Select Score in the Response and Friends in the Factor.
Step4: Click on Graphs and select the Normal plot of residuals and then press OK.
Step5: Press OK.
The obtained graph is,
Interpretation: From the obtained graph, it is observed that the normal quantile plot is nearly fitted to the line. Hence, the residual is approximately normal.
Want to see more full solutions like this?
Chapter 12 Solutions
EBK INTRODUCTION TO THE PRACTICE OF STA
- Negate the following compound statement using De Morgans's laws.arrow_forwardQuestion 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forward
- Characterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forwardLet G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forwardProve sufficiency of the condition for a graph to be bipartite that is, prove that if G hasno odd cycles then G is bipartite as follows:Assume that the statement is false and that G is an edge minimal counterexample. That is, Gsatisfies the conditions and is not bipartite but G − e is bipartite for any edge e. (Note thatthis is essentially induction, just using different terminology.) What does minimality say aboutconnectivity of G? Can G − e be disconnected? Explain why if there is an edge between twovertices in the same part of a bipartition of G − e then there is an odd cyclearrow_forward
- Let G be a connected graph that does not have P4 or C4 as an induced subgraph (i.e.,G is P4, C4 free). Prove that G has a vertex adjacent to all othersarrow_forwardWe consider a one-period market with the following properties: the current stock priceis S0 = 4. At time T = 1 year, the stock has either moved up to S1 = 8 (with probability0.7) or down towards S1 = 2 (with probability 0.3). We consider a call option on thisstock with maturity T = 1 and strike price K = 5. The interest rate on the money marketis 25% yearly.(a) Find the replicating portfolio (φ, ψ) corresponding to this call option.(b) Find the risk-neutral (no-arbitrage) price of this call option.(c) We now consider a put option with maturity T = 1 and strike price K = 3 onthe same market. Find the risk-neutral price of this put option. Reminder: A putoption gives you the right to sell the stock for the strike price K.1(d) An investor with initial capital X0 = 0 wants to invest on this market. He buysα shares of the stock (or sells them if α is negative) and buys β call options (orsells them is β is negative). He invests the cash balance on the money market (orborrows if the amount is…arrow_forwardDetermine if the two statements are equivalent using a truth tablearrow_forward
- Question 4: Determine if pair of statements A and B are equivalent or not, using truth table. A. (~qp)^~q в. р л~9arrow_forwardDetermine if the two statements are equalivalent using a truth tablearrow_forwardQuestion 3: p and q represent the following simple statements. p: Calgary is the capital of Alberta. A) Determine the value of each simple statement p and q. B) Then, without truth table, determine the va q: Alberta is a province of Canada. for each following compound statement below. pvq р^~q ~рл~q ~q→ p ~P~q Pq b~ (d~ ← b~) d~ (b~ v d) 0 4arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning