EBK FOUNDATIONS OF ASTRONOMY
EBK FOUNDATIONS OF ASTRONOMY
14th Edition
ISBN: 8220106820612
Author: Backman
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 12, Problem 1RQ
To determine

The main-sequence of the star.

Expert Solution & Answer
Check Mark

Answer to Problem 1RQ

A main sequence star is generated energy by fusion of hydrogen into helium in its core.

Explanation of Solution

In the H-R diagram, a star is located on the main-sequence. Get causally brighter with age.

  • That should be in Hydrostatic Equilibrium.
  • That should be in Thermal Equilibrium.
  • That should generate the energy by fusion of hydrogen into helium in its core.
  • These conditions are necessary, if not followed the star must left the main-sequence.

Gravity pulls each and every atom in a star towards the center, but its weight is balanced by the outward pressure of the hot gas which is inside the star. In that star, gases are heated by the nuclear reactions. The energy travels toward outside and its support the weight pressing down on it. At the beginning of the fusion, deuterium is burning.

Conclusion:

Therefore, a main sequence star is generated energy by fusion of hydrogen into helium in its core.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
NASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and passengers float freely in apparent "weightlessness." The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low. 31 000 45° nose high 45° nose low 24 000 Zero g 65 Maneuver time (s) (a) What is the aircraft's speed (in m/s) at the top of the parabolic arc? 110.0 m/s (b) What is the aircraft's altitude (in ft) at the top of the parabolic arc? 2.04e+04 What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…
12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?
need help part d
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage