![General Chemistry: Principles And Modern Applications Plus Mastering Chemistry With Pearson Etext -- Access Card Package (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134097329/9780134097329_largeCoverImage.gif)
For each of the following substances describe the importance of dispersion (London) forces, dipole-dipole interactions, and hydrogen bonding:
(a)HCl; (b)
![Check Mark](/static/check-mark.png)
(a)
Interpretation:
Importance of dispersion forces, dipole-dipole interactions and hydrogen bonding for HCl should be described.
Concept introduction:
There are two kind of forces act on molecules. One is intramolecular forces and the other one is intermolecular forces. Intramolecular forces are forces that can be seen within atoms of a molecule. Intermolecular forces exist between the two molecules of same type. Types of intermolecular forces are dipole-dipole interactions, dipole-induced dipole interactions and dispersion interactions. Dipole-dipole interactions occur between the molecules which are polarized with partial positive charge and partial negative charge. Hydrogen bonding is also a special kind of dipole-dipole interaction which forms between H atoms and oxygen, nitrogen or fluorine atoms. Dipole-induced dipole arises by inducing a change in dipole moment of neighboring molecule by a dipole moment of one molecule. Dispersion interactions is occurred by instantaneous dipoles resulted from asymmetric distribution of electrons within a molecule during constant motion of electrons.
Answer to Problem 1E
There are dipole-dipole interactions and dispersion forces between HCl molecules.
Explanation of Solution
HCl is a polar moleculebecause electronegativities of H and Cl are significantly different. Therefore, major intermolecular force present is dipole-dipole interactions. The dispersion forces are also present. There is no hydrogen bonding between HCl molecules as electronegativity of Cl is not sufficient to form hydrogen bonds.
![Check Mark](/static/check-mark.png)
(b)
Interpretation:
Importance of dispersion forces, dipole-dipole interactions and hydrogen bonding for Br2 should be described.
Concept introduction:
There are two kind of forces act on molecules. One is intramolecular forces and the other one is intermolecular forces. Intramolecular forces are forces that can be seen within atoms of a molecule. Intermolecular forces exist between the two molecules of same type. Types of intermolecular forces are dipole-dipole interactions, dipole-induced dipole interactions and dispersion interactions. Dipole-dipole interactions occur between the molecules which are polarized with partial positive charge and partial negative charge. Hydrogen bonding is also a special kind of dipole-dipole interaction which forms between H atoms and oxygen, nitrogen or fluorine atoms. Dipole-induced dipole arises by inducing a change in dipole moment of neighboring molecule by a dipole moment of one molecule. Dispersion interactions is occurred by instantaneous dipoles resulted from asymmetric distribution of electrons within a molecule during constant motion of electrons.
Answer to Problem 1E
Only dispersion forces are present in Br2
Explanation of Solution
Br2 is a non-polar molecule therefore, it does not have permanent dipoles. No dipole-dipole interactions are present. But it can induce instantaneous dipoles and make dispersion forces. Br2 cannot formhydrogen bonding as there is no H atom present.
![Check Mark](/static/check-mark.png)
(c)
Interpretation:
Importance of dispersion forces, dipole-dipole interactions and hydrogen bonding for ICl should be described.
Concept introduction:
There are two kind of forces act on molecules. One is intramolecular forces and the other one is intermolecular forces. Intramolecular forces are forces that can be seen within atoms of a molecule. Intermolecular forces exist between the two molecules of same type. Types of intermolecular forces are dipole-dipole interactions, dipole-induced dipole interactions and dispersion interactions. Dipole-dipole interactions occur between the molecules which are polarized with partial positive charge and partial negative charge. Hydrogen bonding is also a special kind of dipole-dipole interaction which forms between H atoms and oxygen, nitrogen or fluorine atoms. Dipole-induced dipole arises by inducing a change in dipole moment of neighboring molecule by a dipole moment of one molecule. Dispersion interactions is occurred by instantaneous dipoles resulted from asymmetric distribution of electrons within a molecule during constant motion of electrons.
Answer to Problem 1E
Dipole-dipole interactions and dispersion forces are present in ICl
Explanation of Solution
ICl is a polar molecule because electronegativities of I and Cl are significantly different. Therefore major intermolecular force present is dipole-dipole interactions. And dispersion forces are also present. There is no hydrogen bonding between ICl molecules due to absence of H atoms.
![Check Mark](/static/check-mark.png)
(d)
Interpretation:
Importance of dispersion forces, dipole-dipole interactions and hydrogen bonding for HF should be described.
Concept introduction:
There are two kind of forces act on molecules. One is intramolecular forces and the other one is intermolecular forces. Intramolecular forces are forces that can be seen within atoms of a molecule. Intermolecular forces exist between the two molecules of same type. Types of intermolecular forces are dipole-dipole interactions, dipole-induced dipole interactions and dispersion interactions. Dipole-dipole interactions occur between the molecules which are polarized with partial positive charge and partial negative charge. Hydrogen bonding is also a special kind of dipole-dipole interaction which forms between H atoms and oxygen, nitrogen or fluorine atoms. Dipole-induced dipole arises by inducing a change in dipole moment of neighboring molecule by a dipole moment of one molecule. Dispersion interactions is occurred by instantaneous dipoles resulted from asymmetric distribution of electrons within a molecule during constant motion of electrons.
Answer to Problem 1E
Dispersion forces, dipole-dipole interactions and hydrogen bonding are present in HF.
Explanation of Solution
HF is a polar molecule as the electronegativities of H and F are significantly different. Therefore dipole-dipole interactions are present and dispersion forces also can be seen. HF can form hydrogen bonds as H in one HF molecule can interact with F atom in another HF molecule due to electronegativity difference between H and F.
![Check Mark](/static/check-mark.png)
(e)
Interpretation:
Importance of dispersion forces, dipole-dipole interactions and hydrogen bonding for CH4 should be described.
Concept introduction:
There are two kind of forces act on molecules. One is intramolecular forces and the other one is intermolecular forces. Intramolecular forces are forces that can be seen within atoms of a molecule. Intermolecular forces exist between the two molecules of same type. Types of intermolecular forces are dipole-dipole interactions, dipole-induced dipole interactions and dispersion interactions. Dipole-dipole interactions occur between the molecules which are polarized with partial positive charge and partial negative charge. Hydrogen bonding is also a special kind of dipole-dipole interaction which forms between H atoms and oxygen, nitrogen or fluorine atoms. Dipole-induced dipole arises by inducing a change in dipole moment of neighboring molecule by a dipole moment of one molecule. Dispersion interactions is occurred by instantaneous dipoles resulted from asymmetric distribution of electrons within a molecule during constant motion of electrons.
Answer to Problem 1E
Dispersion forces are present in CH4.
Explanation of Solution
CH4 is a non-polar molecule so, it does not have permanent dipoles. Thus, no dipole-dipole interactions present. But it can induce instantaneous dipoles leading to dispersion forces. CH4 cannot form hydrogen bonds.
Want to see more full solutions like this?
Chapter 12 Solutions
General Chemistry: Principles And Modern Applications Plus Mastering Chemistry With Pearson Etext -- Access Card Package (11th Edition)
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Introductory Chemistry (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Essential Biology (7th Edition)
Microbiology: An Introduction
- 5) Confidence interval. Berglund and Wichardt investigated the quantitative determination of Cr in high-alloy steels using a potentiometric titration of Cr(VI). Before the titration, samples of the steel were dissolved in acid and the chromium oxidized to Cr(VI) using peroxydisulfate. Shown here are the results (as %w/w Cr) for the analysis of a reference steel. 16.968, 16.922, 16.840, 16.883, 16.887, 16.977, 16.857, 16.728 Calculate the mean, the standard deviation, and the 95% confidence interval about the mean. What does this confidence interval mean?arrow_forwardIn the Nitrous Acid Test for Amines, what is the observable result for primary amines? Group of answer choices nitrogen gas bubbles form a soluble nitrite salt yellow oily layer of nitrosoaminearrow_forward3. a. Use the MS to propose at least two possible molecular formulas. For an unknown compound: 101. 27.0 29.0 41.0 50.0 52.0 55.0 57.0 100 57.5 58.0 58.5 62.0 63.0 64.0 65.0 74.0 40 75.0 76.0 20 20 40 60 80 100 120 140 160 180 200 220 m/z 99.5 68564810898409581251883040 115.0 116.0 77404799 17417M 117.0 12.9 118.0 33.5 119.0 36 133 0 1.2 157.0 2.1 159.0 16 169.0 219 170.0 17 171.0 21.6 172.0 17 181.0 1.3 183.0 197.0 100.0 198.0 200. 784 Relative Intensity 2 2 8 ō (ppm) 6 2arrow_forward
- Solve the structure and assign each of the following spectra (IR and C-NMR)arrow_forward1. For an unknown compound with a molecular formula of C8H100: a. What is the DU? (show your work) b. Solve the structure and assign each of the following spectra. 8 6 2 ō (ppm) 4 2 0 200 150 100 50 ō (ppm) LOD D 4000 3000 2000 1500 1000 500 HAVENUMBERI -11arrow_forward16. The proton NMR spectral information shown in this problem is for a compound with formula CioH,N. Expansions are shown for the region from 8.7 to 7.0 ppm. The normal carbon-13 spec- tral results, including DEPT-135 and DEPT-90 results, are tabulated: 7 J Normal Carbon DEPT-135 DEPT-90 19 ppm Positive No peak 122 Positive Positive cus и 124 Positive Positive 126 Positive Positive 128 No peak No peak 4° 129 Positive Positive 130 Positive Positive (144 No peak No peak 148 No peak No peak 150 Positive Positive してしarrow_forward
- 3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). + En CN CNarrow_forwardShow work..don't give Ai generated solution...arrow_forwardLabel the spectrum with spectroscopyarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)