(a)
The ionic charge for the given element chlorine
( Cl )
.
(a)
Answer to Problem 14E
Explanation of Solution
Given Info: Refer to the periodic table figure 11.24.
Explanation:
Chlorine belongs to the group 7A. The elements of group 7A have one electron less than the noble configuration thus tends to gain one electron and complete their octet.
The elements of group 7A gain one electron and form an anion with charge
Conclusion:
Therefore, the ionic charge for chlorine
(b)
The ionic charge for the given element lithium
( Li )
.
(b)
Answer to Problem 14E
Explanation of Solution
Given Info: Refer to the periodic table figure 11.24.
Explanation:
Lithium belongs to the group 1A. The elements of group 1A have one electron more than the noble configuration thus tends to lose one electron and complete their octet.
The elements of group 1A lose one electron and form a cation with charge
Conclusion:
Therefore, the ionic charge for lithium
(c)
The ionic charge for the given element selenium
( Se )
.
(c)
Answer to Problem 14E
Explanation of Solution
Given Info: Refer to the periodic table figure 11.24.
Explanation:
Selenium belongs to the group 6A. The elements of group 6A have two electrons less than the noble configuration thus tends to gain two electrons and complete their octet.
The elements of group 6A gain two electrons and form an anion with charge
Conclusion:
Therefore, the ionic charge for selenium
(d)
The ionic charge for the given element strontium
( Sr )
.
(d)
Answer to Problem 14E
Explanation of Solution
Given Info: Refer to the periodic table figure 11.24.
Explanation:
Strontium belongs to the group 2A. The elements of group 2A have two electrons more than the noble configuration thus tends to lose two electrons and complete their octet.
The elements of group 2A lose two electrons and form a cation with charge
Conclusion:
Therefore, the ionic charge for strontium
(e)
The ionic charge for the given element gallium
( Ga )
.
(e)
Answer to Problem 14E
Explanation of Solution
Given Info: Refer to the periodic table figure 11.24.
Explanation:
Gallium belongs to the group 3A. The elements of group 3A have three electrons more than the noble configuration thus tends to lose three electrons and complete their octet.
The elements of group 3A lose three electrons and form a cation with charge
Conclusion:
Therefore, the ionic charge for gallium
(f)
The ionic charge for the given element phosphorous
( P )
.
(f)
Answer to Problem 14E
Explanation of Solution
Given Info: Refer to the periodic table figure 11.24.
Explanation:
Phosphorous belongs to the group 5A. The elements of group 5A have three electrons less than the noble configuration thus tends to gain 3 electrons and complete their octet.
The elements of group 5A gain 3 electrons and form an anion with charge
Conclusion:
Therefore, the ionic charge for phosphorous
(g)
The ionic charge for the given element radon
( Rn )
.
(g)
Answer to Problem 14E
Explanation of Solution
Given Info: Refer to the periodic table figure 11.24.
Explanation:
Radon belongs to the group 8A. The elements of group 8A are called noble gas elements. They have completely filled octet and are very stable. They do not gain or lose electrons because they are already very stable.
Thus, the elements of group 8A have an ionic charge of
Conclusion:
Therefore, the ionic charge for radon
(h)
The ionic charge for the given element silicon
( Si )
.
(h)
Answer to Problem 14E
Explanation of Solution
Given Info: Refer to the periodic table figure 11.24.
Explanation:
Silicon belongs to the group 4A. Elements of group 4A have 4 valence electrons and 4 electrons less than noble configuration. Elements of group 4A do not form ions generally because it is very difficult to gain or lose 4 electrons to complete the octet. Thus, the elements of group 4A have an ionic charge of
Conclusion:
Therefore, the ionic charge for silicon
Want to see more full solutions like this?
Chapter 12 Solutions
An Introduction to Physical Science
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- No chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forward
- ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forward
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill