Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12P
To determine
The average distance between two stars in the open cluster.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If an open cluster contains 650 stars and is 27 pc in diameter, what is the average distance between the stars? (Hint: On average, what share of the volume of the cluster surrounds each star?)
If an open cluster contains 450 stars and is 21 pc in diameter, what is the average distance between the stars? (Hint: On average, what share of the volume of the cluster surrounds each star? Note: The volume of a sphere is
4
3
?r 3.)
If an open cluster contains 350 stars and is 48 pc in diameter, what is the average distance between the stars? On average what, share of the volume of the cluster surrounds each star?
Chapter 12 Solutions
Foundations of Astronomy
Ch. 12 - Prob. 1RQCh. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Describe the law of hydrostatic equilibrium.Ch. 12 - Prob. 7RQCh. 12 - Prob. 8RQCh. 12 - Prob. 9RQCh. 12 - Prob. 10RQ
Ch. 12 - Prob. 11RQCh. 12 - Prob. 12RQCh. 12 - Prob. 13RQCh. 12 - Prob. 14RQCh. 12 - Prob. 15RQCh. 12 - Prob. 16RQCh. 12 - Prob. 17RQCh. 12 - Prob. 18RQCh. 12 - Prob. 19RQCh. 12 - What gives the triple-alpha process its name? Why...Ch. 12 - Prob. 21RQCh. 12 - Prob. 22RQCh. 12 - Prob. 23RQCh. 12 - Prob. 24RQCh. 12 - Prob. 25RQCh. 12 - Prob. 26RQCh. 12 - Prob. 27RQCh. 12 - Prob. 28RQCh. 12 - Prob. 29RQCh. 12 - Prob. 30RQCh. 12 - Prob. 31RQCh. 12 - How Do We Know? How can mathematical models allow...Ch. 12 - Prob. 1DQCh. 12 - Prob. 2DQCh. 12 - Prob. 3DQCh. 12 - Prob. 4DQCh. 12 - Prob. 5DQCh. 12 - Prob. 6DQCh. 12 - Prob. 1PCh. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - Prob. 13PCh. 12 - Prob. 14PCh. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 1LTLCh. 12 - Prob. 2LTLCh. 12 - Prob. 3LTLCh. 12 - Prob. 4LTLCh. 12 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a globular cluster contains 2 million stars and is 28 pc in diameter, what is the average distance between the stars? (Hints: What share of the volume of the cluster surrounds the average star? The volume of a sphere is 4/3 ?R3.)arrow_forwardIf a globular cluster contains 1 million stars and is 25 pc in diameter, what is the average distance between the stars? ( what share of the volume of the cluster surrounds the average star?)arrow_forwardCan you please help with Part 2 of 2? Thank you.arrow_forward
- If the RR Lyrae stars in a globular cluster have average apparent magnitudes of +19, how far away (in pc) is the cluster? (Hints: See the following figure, and use the magnitude-distance formula: d = 10(mv - My+5)/5.) Туре (Classical) Cepheids 104 103 Туре II Cepheids 102 RR Lyrae stars 0.3 1 10 30 100 Pulsation perlod (days) pc Absolute magnitude Luminosity, L L.arrow_forwardA giant molecular cloud is 22 pc in diameter and has a density of 240 hydrogen molecules/cm3. What is its mass in units of solar masses? (Notes: The volume of a sphere is 4/3 πR3 and the mass of a hydrogen atom is 1.67 ✕ 10−27 kg. A hydrogen molecule consists of 2 H atoms.) Answer in Kgarrow_forwardA planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the nebula is expanding at a rate of 35 km/s. How far away is the nebula in parsecs? First, determine what distance the nebular expanded in parsecs during the time mentioned. Δd = vpc/sTs So we first need to convert the rate into pc/s and the time into seconds: vpc/s = vkm/s (1 pc / 3.09 x 1013km) vpc/s = ? Ts = (Tyr)(365 days/yr)(24 hrs/day)(3600 s/hr) Ts = ? s Δd= vpc/sTs Therefore, Δd = ? pcarrow_forward
- If a globular cluster contains 2 million stars and is 30 pc in diameter, what is the average distance between the stars?arrow_forwardSuppose a protostar has a luminosity of 157,341 Lo and a surface temperature of 4,540 K (Kelvins). What is the radius of this protostar? [Enter your answer as a multiple of the Sun's radius. I.e., if you find R = 20 Ro enter 20. This problem is easier if you start with the relevant equation and create a ratio using the Sun's values. Recall that the Sun has a surface temperature of 5778 K. ]arrow_forwardLooking for ___ pcarrow_forward
- How many years? Thank you!arrow_forwardThe difference in absolute magnitude between two objects is related to their fluxes by the flux-magnitude relation: FA / FB = 2.51(MB - MA) A distant galaxy contains a supernova with an absolute magnitude of -19. If this supernova were placed next to our Sun (M = +4.8) and you observed both of them from the same distance, how much more flux would the supernova emit than the Sun? Fsupernova / FSun = ?arrow_forwardIf the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax