Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 8P
To determine
The average density of the sun after the expansion of its radius by
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
If the sun expanded to a radius 200 times it's present radius, what would the average density be (in g/cm^3?)
if the sun expanded to a radius 200 times its present radius what would its average density ne in (g/cm^3?)
In the model shown in the table below, what fraction of the Sun's mass is hotter than 5,000,000 K?
R/R SunT (106 K) Density (g/cm³)
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00
0.006
0.60
1.2
2.3
3.1
4.9
5.1
6.9
9.3
13.1
15.7
0.00
0.009
0.035
0.12
0.40
1.3
4.1
13
36
89
150
M/M Sun L/L Sun
1.00
0.999
0.996
0.990
0.97
0.92
0.82
0.63
0.34
0.073
0.000
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.99
0.91
0.40
0.00
Chapter 12 Solutions
Foundations of Astronomy
Ch. 12 - Prob. 1RQCh. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Describe the law of hydrostatic equilibrium.Ch. 12 - Prob. 7RQCh. 12 - Prob. 8RQCh. 12 - Prob. 9RQCh. 12 - Prob. 10RQ
Ch. 12 - Prob. 11RQCh. 12 - Prob. 12RQCh. 12 - Prob. 13RQCh. 12 - Prob. 14RQCh. 12 - Prob. 15RQCh. 12 - Prob. 16RQCh. 12 - Prob. 17RQCh. 12 - Prob. 18RQCh. 12 - Prob. 19RQCh. 12 - What gives the triple-alpha process its name? Why...Ch. 12 - Prob. 21RQCh. 12 - Prob. 22RQCh. 12 - Prob. 23RQCh. 12 - Prob. 24RQCh. 12 - Prob. 25RQCh. 12 - Prob. 26RQCh. 12 - Prob. 27RQCh. 12 - Prob. 28RQCh. 12 - Prob. 29RQCh. 12 - Prob. 30RQCh. 12 - Prob. 31RQCh. 12 - How Do We Know? How can mathematical models allow...Ch. 12 - Prob. 1DQCh. 12 - Prob. 2DQCh. 12 - Prob. 3DQCh. 12 - Prob. 4DQCh. 12 - Prob. 5DQCh. 12 - Prob. 6DQCh. 12 - Prob. 1PCh. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - Prob. 13PCh. 12 - Prob. 14PCh. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 1LTLCh. 12 - Prob. 2LTLCh. 12 - Prob. 3LTLCh. 12 - Prob. 4LTLCh. 12 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the Sun's average density using this formula: V = 4 /3 π r 3 where V = volume (m3) and r = radius (m) ρ = m /V where ρ = density (kg/m3), m = mass (kg), and V = volume (m3arrow_forwardHow would the interior temperature of the Sun be different if the strong force that binds nuclei together were 10 times as strong?arrow_forwardIf the radius of the sun is 7.001×105 km, what is the average density of the sun in units of grams per cubic centimeter? The volume of a sphere is (4/3)π r3. The sun is a sphere with an estimated mass of 2.00×1030 kg. What exactly is the conversion process for this?arrow_forward
- Show that the statement that 92% of the Sun’s atoms are hydrogen is consistent with the statement that 73% of the Sun’s mass is made up of hydrogen, as found in Table 15.2. (Hint: Make the simplifying assumption, which is nearly correct, that the Sun is made up entirely of hydrogen and helium.)arrow_forwardWhat is the average density of the Sun? How does it compare to the average density of Earth?arrow_forwardTable 15.1 indicates that the density of the Sun is 1.41 g/cm3. Since other materials, such as ice, have similar densities, how do you know that the Sun is not made of ice?arrow_forward
- The text says that the Local Fluff, which surrounds the Sun, has a temperature of 7500 K and a density 0.1 atom per cm3. The Local Fluff is embedded in hot gas with a temperature of 106 K and a density of about 0.01 atom per cm3. Are they in equilibrium? (Hint: In pressure equilibrium, the two regions must have nT equal, where n is the number of particles per unit volume and T is the temperature.) What is likely to happen to the Local Fluff?arrow_forwardWhy do you suppose so great a fraction of the Sun’s energy comes from its central regions? Within what fraction of the Sun’s radius does practically all of the Sun’s luminosity originate (see Figure 16.16)? Within what radius of the Sun has its original hydrogen been partially used up? Discuss what relationship the answers to these questions bear to one another. Figure 16.16 shows how the temperature, density, rate of energy generation, and composition vary from the center of the Sun to its surface.arrow_forwardNow suppose that all of the hydrogen atoms in the Sun were converted into helium. How much total energy would be produced? (To calculate the answer, you will have to estimate how many hydrogen atoms are in the Sun. This will give you good practice with scientific notation, since the numbers involved are very large! See Appendix C for a review of scientific notation.)arrow_forward
- From Doppler shifts of the spectral lines in the light coming from the east and west edges of the Sun, astronomers find that the radial velocities of the two edges differ by about 4 km/s, meaning that the Sun’s rotation rate is 2 km/s. Find the approximate period of rotation of the Sun in days. The circumference of a sphere is given by 2pR, where R is the radius of the sphere.arrow_forwardUse the Virial Theorem to estimate the temperature in the core of the Sunarrow_forwardWhat changes would you notice if the sun emitted radiation at an effective temperature of 2000 K instead of 5762 K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning