PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
11th Edition
ISBN: 9780198826910
Author: ATKINS
Publisher: Oxford University Press
Question
Book Icon
Chapter 12, Problem 12A.7BE

(i)

Interpretation Introduction

Interpretation:

The relative population differences for the 13C nuclei in the magnetic field of 0.50T has to be calculated.

Concept introduction:

The frequency of electromagnetic radiation is given by resonance condition.  This resonance condition gives an equation that relates the frequency of nuclei with the magnetic field.  The frequency of nuclei is given by the equation as shown below.

  v=γNBo2π

The above-stated frequency is known as the Larmor precession frequency.  Larmor precession is a phenomenon in which the magnetic moment of nuclei precesses about an external magnetic field.

(i)

Expert Solution
Check Mark

Answer to Problem 12A.7BE

The relative population differences for the 13C nuclei in the magnetic field of 0.50T is 4.30×107_.

Explanation of Solution

The relative population difference of the nuclei is calculated by the formula shown below.

  δNN=NαNβNγNB02kT=gIμNB02kT        (1)

Where,

  • μN is the nuclear magneton.
  • gI is the nuclear g factor.
  • Bo is the magnetic field.
  • N is the total number of spin.
  • k is the Boltzmann constant.
  • T is the temperature.

The temperature is 25 °C.  The conversion of temperature in Kelvin is shown below.

  T=(273+25 °C)K=298 K

The value if μN is 5.051×1027JT1, the value of gI is 1.405, the magnetic field (Bo) is 0.50T, the value of k is 1.381×1023JK1 and the temperature is 298 K.

Substitute the corresponding values in equation (1) as shown below.

  δNN=gIμNB02kT=(1.405)(5.051×1027JT1)(0.50T)2(1.381×1023JK1)(298K)=3.54×10278.23×1021=4.30×107_

Therefore, the relative population differences for the 13C nuclei is 4.30×107_.

(ii)

Interpretation Introduction

Interpretation:

The relative population differences for the 13C nuclei in the magnetic field of 2.5T has to be calculated.

Concept introduction:

The frequency of electromagnetic radiation is given by resonance condition.  This resonance condition gives an equation that relates the frequency of nuclei with the magnetic field.  The frequency of nuclei is given by the equation as shown below.

  v=γNBo2π

The above-stated frequency is known as the Larmor precession frequency.  Larmor precession is a phenomenon in which the magnetic moment of nuclei precesses about an external magnetic field.

(ii)

Expert Solution
Check Mark

Answer to Problem 12A.7BE

The relative population differences for the 13C nuclei in the magnetic field of 2.5T is 2.15×106_.

Explanation of Solution

The relative population difference of the nuclei is calculated by the formula shown below.

  δNN=NαNβNγNB02kT=gIμNB02kT        (1)

Where,

  • μN is the nuclear magneton.
  • gI is the nuclear g factor.
  • Bo is the magnetic field.
  • N is the total number of spin.
  • k is the Boltzmann constant.
  • T is the temperature.

The temperature is 25 °C.  The conversion of temperature in Kelvin is shown below.

  T=(273+25 °C)K=298 K

The value if μN is 5.051×1027JT1, the value of gI is 1.405, the magnetic field (Bo) is 2.5T, the value of k is 1.381×1023JK1 and the temperature is 298 K.

Substitute the corresponding values in equation (1) as shown below.

  δNN=gIμNB02kT=(1.405)(5.051×1027JT1)(2.5T)2(1.381×1023JK1)(298K)=17.741×10278.23×1021=2.15×106_

Therefore, the relative population differences for the 13C nuclei is 2.15×106_.

(iii)

Interpretation Introduction

Interpretation:

The relative population differences for the 13C nuclei in the magnetic field of 15.5T has to be calculated.

Concept introduction:

The frequency of electromagnetic radiation is given by resonance condition.  This resonance condition gives an equation that relates the frequency of nuclei with the magnetic field.  The frequency of nuclei is given by the equation as shown below.

  v=γNBo2π

The above-stated frequency is known as the Larmor precession frequency.  Larmor precession is a phenomenon in which the magnetic moment of nuclei precesses about an external magnetic field.

(iii)

Expert Solution
Check Mark

Answer to Problem 12A.7BE

The relative population differences for the 13C nuclei in the magnetic field of 15.5T is 1.33×105_.

Explanation of Solution

The relative population difference of the nuclei is calculated by the formula shown below.

  δNN=NαNβNγNB02kT=gIμNB02kT        (1)

Where,

  • μN is the nuclear magneton.
  • gI is the nuclear g factor.
  • Bo is the magnetic field.
  • N is the total number of spin.
  • k is the Boltzmann constant.
  • T is the temperature.

The temperature is 25 °C.  The conversion of temperature in Kelvin is shown below.

  T=(273+25 °C)K=298 K

The value if μN is 5.051×1027JT1, the value of gI is 1.405, the magnetic field (Bo) is 15.5T, the value of k is 1.381×1023JK1 and the temperature is 298 K.

Substitute the corresponding values in equation (1) as shown below.

  δNN=gIμNB02kT=(1.405)(5.051×1027JT1)(15.5T)2(1.381×1023JK1)(298K)=109.9×10278.23×1021=1.33×105_

Therefore, the relative population differences for the 13C nuclei is 1.33×105_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In the analysis of Mg content in a 25 mL sample, a titration volume of 5 mL was obtained using 0.01 M EDTA. Calculate the Mg content in the sample if the Ca content is 20 ppm
Predict the organic products that form in the reaction below: H. H+ + OH H+ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Explanation Check Click and drag to start drawing a structure. G X C © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Access +
111 Carbonyl Chem Choosing reagants for a Wittig reaction What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 1 2 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure. × ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use

Chapter 12 Solutions

PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)

Ch. 12 - Prob. 12A.2BECh. 12 - Prob. 12A.3AECh. 12 - Prob. 12A.3BECh. 12 - Prob. 12A.4AECh. 12 - Prob. 12A.4BECh. 12 - Prob. 12A.5AECh. 12 - Prob. 12A.5BECh. 12 - Prob. 12A.6AECh. 12 - Prob. 12A.6BECh. 12 - Prob. 12A.7AECh. 12 - Prob. 12A.7BECh. 12 - Prob. 12A.8AECh. 12 - Prob. 12A.8BECh. 12 - Prob. 12A.9AECh. 12 - Prob. 12A.9BECh. 12 - Prob. 12A.1PCh. 12 - Prob. 12A.3PCh. 12 - Prob. 12B.1DQCh. 12 - Prob. 12B.2DQCh. 12 - Prob. 12B.3DQCh. 12 - Prob. 12B.4DQCh. 12 - Prob. 12B.5DQCh. 12 - Prob. 12B.1AECh. 12 - Prob. 12B.1BECh. 12 - Prob. 12B.2AECh. 12 - Prob. 12B.2BECh. 12 - Prob. 12B.3AECh. 12 - Prob. 12B.3BECh. 12 - Prob. 12B.4AECh. 12 - Prob. 12B.4BECh. 12 - Prob. 12B.5AECh. 12 - Prob. 12B.5BECh. 12 - Prob. 12B.6AECh. 12 - Prob. 12B.6BECh. 12 - Prob. 12B.7AECh. 12 - Prob. 12B.7BECh. 12 - Prob. 12B.8AECh. 12 - Prob. 12B.8BECh. 12 - Prob. 12B.9AECh. 12 - Prob. 12B.9BECh. 12 - Prob. 12B.10AECh. 12 - Prob. 12B.10BECh. 12 - Prob. 12B.11AECh. 12 - Prob. 12B.11BECh. 12 - Prob. 12B.12AECh. 12 - Prob. 12B.12BECh. 12 - Prob. 12B.13AECh. 12 - Prob. 12B.13BECh. 12 - Prob. 12B.14AECh. 12 - Prob. 12B.14BECh. 12 - Prob. 12B.1PCh. 12 - Prob. 12B.2PCh. 12 - Prob. 12B.3PCh. 12 - Prob. 12B.5PCh. 12 - Prob. 12B.6PCh. 12 - Prob. 12B.7PCh. 12 - Prob. 12B.8PCh. 12 - Prob. 12B.9PCh. 12 - Prob. 12C.1DQCh. 12 - Prob. 12C.2DQCh. 12 - Prob. 12C.3DQCh. 12 - Prob. 12C.4DQCh. 12 - Prob. 12C.5DQCh. 12 - Prob. 12C.1AECh. 12 - Prob. 12C.1BECh. 12 - Prob. 12C.2AECh. 12 - Prob. 12C.2BECh. 12 - Prob. 12C.3AECh. 12 - Prob. 12C.3BECh. 12 - Prob. 12C.4AECh. 12 - Prob. 12C.4BECh. 12 - Prob. 12C.5AECh. 12 - Prob. 12C.5BECh. 12 - Prob. 12C.4PCh. 12 - Prob. 12C.5PCh. 12 - Prob. 12C.6PCh. 12 - Prob. 12C.10PCh. 12 - Prob. 12D.1DQCh. 12 - Prob. 12D.2DQCh. 12 - Prob. 12D.1AECh. 12 - Prob. 12D.1BECh. 12 - Prob. 12D.2AECh. 12 - Prob. 12D.2BECh. 12 - Prob. 12D.3AECh. 12 - Prob. 12D.3BECh. 12 - Prob. 12D.4AECh. 12 - Prob. 12D.4BECh. 12 - Prob. 12D.5AECh. 12 - Prob. 12D.5BECh. 12 - Prob. 12D.6AECh. 12 - Prob. 12D.6BECh. 12 - Prob. 12D.1PCh. 12 - Prob. 12D.2PCh. 12 - Prob. 12D.4PCh. 12 - Prob. 12D.5PCh. 12 - Prob. 12D.6PCh. 12 - Prob. 12D.7PCh. 12 - Prob. 12D.8PCh. 12 - Prob. 12.3IACh. 12 - Prob. 12.4IA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY