Interpretation:
Mole fractions of Oxygen and Nitrogen air dissolved in water to be determined which then the answer has to be commented.
Concept Introduction:
Mole fraction: Concentration of the solution can also expressed by mole fraction. Mole fraction is equal to moles of the component divided by total moles of the mixture.
Moles: One mole is equivalent to the mass of the substance consists same number of units equal to the atoms present in
From given mass of substance moles could be calculated by using the following formula,
Henry’s law: At constant temperature, amount of dissolved gas and volume of liquid proportional to the partial pressure of that gas in equilibrium with that liquid. This law applies most precisely for dilute solutions of a gas that does not react or dissociate with the solvent.
Henry’s law states that dissolved gases in liquid are directly proportional to the partial pressure of the gas over the solution.
Where,
Answer to Problem 12.96QP
The mole fraction of Oxygen is
The mole fraction of Nitrogen is
Explanation of Solution
Given:
Partial pressure of Oxygen in air
Partial pressure of Nitrogen in air
Temperature
The concentration for oxygen and nitrogen is calculated as follows,
Assume the water density is
Calculate the mole fractions of oxygen and nitrogen:
Comment about the obtained answer:
The ratios between oxygen and nitrogen mole fractions in air and water are represented above.
Comparing the oxygen and nitrogen mole fractions in air and water shows that in water their mole fraction are greater due to the fact that oxygen is more soluble in water than nitrogen. Hence, fish is more efficient in extracting oxygen which is in small concentration in water.
Mole fractions of Oxygen and Nitrogen air dissolved in water were determined which then the answer was commented.
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry
- What is the preparation of 500 mL of 100mM MOPS buffer (pH=7.5) starting with 1 M MOPS and 1 M NaOH? How would I calculate the math?arrow_forwardIndicate the correct option.a) Isopolianions are formed around metallic atoms in a low oxidation state.b) Non-metals such as N, S, C, Cl, ... give rise to polyacids (oxygenated).c) Both are incorrect.arrow_forward14. Which one of the compounds below is the major organic product obtained from the following series of reactions? Br OH OH CH3O™ Na+ H*, H₂O SN2 HO OH A B C D 0 Earrow_forward
- Wavelength (nm) I'm not sure what equation I can come up with other than the one generated with my graph. Can you please show me the calculations that were used to find this equation? Give an equation that relates energy to wavelength. Explain how you arrived at your equation. Wavelength Energy (kJ/mol) (nm) 350 341.8 420 284.8 470 254.5 530 225.7 580 206.3 620 192.9 700 170.9 750 159.5 Energy vs. Wavelength (Graph 1) 400 350 y=-0.4367x+470.82 300 250 200 150 100 50 O 0 100 200 300 400 500 600 700 800 Energy (kJ/mol)arrow_forward5. Draw molecular orbital diagrams for superoxide (O2¯), and peroxide (O2²-). A good starting point would be MO diagram for O2 given in your textbook. Then: a) calculate bond orders in superoxide and in peroxide; indicate which species would have a stronger oxygen-oxygen bond; b) indicate which species would be a radical. (4 points)arrow_forward16. Which one of the compunds below is the final product of the reaction sequence shown here? عملاء .OH Br. (CH3)2CH-C=C H+,H,O 2 mol H2, Pt A OH B OH D OH E OH C OHarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning