
Concept explainers
Calculate the molalities of the following aqueous solutions: (a) 1.22 M sugar (C12H22O11) solution (density of solution = 1.12 g/mL), (b) 0.87 M NaOH solution (density of solution = 1.04 g/mL), (c) 5.24 M NaHCO3 solution (density of solution = 1.19 g/mL).
(a)

Interpretation: For the aqueous
Concept introduction:
Molality: Molality is defined as number of moles of the solute present in the specified amount of the solvent in kilograms.
Moles: One mole is equivalent to the mass of the substance consists same number of units equal to the atoms present in
From given mass of substance moles could be calculated by using the following formula,
Mass: It is the quantitative measure of a substance. The amount of matter present in substance is expressed as mass. The
Answer to Problem 12.19QP
Molality of
Explanation of Solution
Given data: Strength of sugar solution
Density of sugar solution
Calculation of mass of sugar:
Substitute the value of strength of sugar and molecular mass of sugar in the formula to calculate mass of sugar.
Molecular weight of sugar
Calculation of mass of sugar solution:
Calculation of molality of the solution:
Substitute the value of moles of sugar and amount of solvent (water) into molality formula to calculate molality of sugar solution.
(b)

Interpretation: For the aqueous
Concept introduction:
Molality (m): Molality is the number of moles of solute present in one kilogram of solvent. Molality is estimation of moles in relationship with solvent in the solution.
Moles: One mole is equivalent to the mass of the substance consists same number of units equal to the atoms present in
From given mass of substance moles could be calculated by using the following formula,
Mass: It is the quantitative measure of a substance. The amount of matter present in substance is expressed as mass. The
Answer to Problem 12.19QP
Molality of
Explanation of Solution
Given data: Strength of Sodium hydroxide solution
Density of Sodium hydroxide solution
Calculation of mass of
Substitute the value of strength of
Molecular weight of
Calculation of mass of
Calculation of molality of the solution:
Substitute the value of moles of Sodium hydroxide and amount of solvent (water) into molality formula, to calculate molality.
(c)

Interpretation: For the aqueous
Concept introduction:
Molality (m): Molality is the number of moles of solute present in one kilogram of solvent. Molality is estimation of moles in relationship with solvent in the solution.
Moles: One mole is equivalent to the mass of the substance consists same number of units equal to the atoms present in
From given mass of substance moles could be calculated by using the following formula,
Mass: It is the quantitative measure of a substance. The amount of matter present in substance is expressed as mass. The
Answer to Problem 12.19QP
Molality of
Explanation of Solution
Given data: Strength of Sodium bicarbonate solution
Density of Sodium bicarbonate solution
Calculation of mass for
Substitute the value of molecular mass and strength of Sodium bicarbonate to calculate mass of
Calculation of molality for given solution:
Substitute the value of moles of Sodium bicarbonate and amount of solvent (water) into molality formula to calculate molality of the given solution.
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry
Additional Science Textbook Solutions
Microbiology: Principles and Explorations
Brock Biology of Microorganisms (15th Edition)
Organic Chemistry
MARINE BIOLOGY
Biology: Life on Earth (11th Edition)
Genetics: From Genes to Genomes
- Which of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forwardBased on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forwardPLEASE HELP URGENT!arrow_forward
- Draw the skeletal structure corresponding to the following IUPAC name: 7-isopropyl-3-methyldecanearrow_forwardWhich of the following oxyacids is the weakest? Group of answer choices H2SeO3 Si(OH)4 H2SO4 H3PO4arrow_forwardAdd conditions above and below the arrow that turn the reactant below into the product below in a single transformation. + More... If you need to write reagents above and below the arrow that have complex hydrocarbon groups in them, there is a set of standard abbreviations you can use. More... T H,N NC Datarrow_forward
- Indicate the order of basicity of primary, secondary and tertiary amines.arrow_forward> Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. Cl Z- N O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic ○ antiaromatic nonaromaticarrow_forwardPlease help me answer this question. I don't understand how or even if this can happen in a single transformation. Please provide a detailed explanation and a drawing showing how it can happen in a single transformation. Add the necessary reagents and reaction conditions above and below the arrow in this organic reaction. If the products can't be made from the reactant with a single transformation, check the box under the drawing area instead.arrow_forward
- 2) Draw the correct chemical structure (using line-angle drawings / "line structures") from their given IUPAC name: a. (E)-1-chloro-3,4,5-trimethylhex-2-ene b. (Z)-4,5,7-trimethyloct-4-en-2-ol C. (2E,6Z)-4-methylocta-2,6-dienearrow_forwardපිපිම Draw curved arrows to represent the flow of electrons in the reaction on the left Label the reactants on the left as either "Acid" or "Base" (iii) Decide which direction the equilibrium arrows will point in each reaction, based on the given pk, values (a) + H-O H 3-H + (c) H" H + H****H 000 44-00 NH₂ (e) i Дон OH Ө NHarrow_forward3) Label the configuration in each of the following alkenes as E, Z, or N/A (for non-stereogenic centers). 00 E 000 N/A E Br N/A N/A (g) E N/A OH E (b) Oz N/A Br (d) 00 E Z N/A E (f) Oz N/A E (h) Z N/Aarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





