PKG ORGANIC CHEMISTRY
PKG ORGANIC CHEMISTRY
5th Edition
ISBN: 9781259963667
Author: SMITH
Publisher: MCG
Question
Book Icon
Chapter 12, Problem 12.59P
Interpretation Introduction

(a)

Interpretation: The allylic alcohol and DET isomer needed to make the given chiral epoxide using Sharpless asymmetric epoxidation reaction is to be identified.

Concept introduction: Sharpless epoxidation involves the oxidation of double bond between carbon atoms to form an epoxide. This oxidation occurs only in allylic alcohol. This is an enantioselective oxidation, which means predominantly one enantiomer is formed. Sharpless reagents are tert-butylhydroperoxide,(CH3)3COOH; titanium (IV) isopropoxide, Ti[OCH(CH3)2]4; and diethyl tartrate.

Interpretation Introduction

(b)

Interpretation: The allylic alcohol and DET isomer needed to make the given chiral epoxide using Sharpless asymmetric epoxidation reaction is to be identified.

Concept introduction: Sharpless epoxidation involves the oxidation of double bond between carbon atoms to form an epoxide. This oxidation occurs only in allylic alcohol. This is an enantioselective oxidation, which means predominantly one enantiomer is formed. Sharpless reagents are tert-butylhydroperoxide,(CH3)3COOH; titanium (IV) isopropoxide, Ti[OCH(CH3)2]4; and diethyl tartrate.

Interpretation Introduction

(c)

Interpretation: The allylic alcohol and DET isomer needed to make the given chiral epoxide using Sharpless asymmetric epoxidation reaction is to be identified.

Concept introduction: Sharpless epoxidation involves the oxidation of double bond between carbon atoms to form an epoxide. This oxidation occurs only in allylic alcohol. This is an enantioselective oxidation, which means predominantly one enantiomer is formed. Sharpless reagents are tert-butylhydroperoxide,(CH3)3COOH; titanium (IV) isopropoxide, Ti[OCH(CH3)2]4; and diethyl tartrate.

Blurred answer
Students have asked these similar questions
Reagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4-1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution. Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because they will be used to calibrate the atomic absorption spectrometer. a. Compare the solution concentrations expressed as ppm Zn and ppm Zn(NO3)2. Compare the concentrations expressed as M Zn and M Zn(NO3)2 - Which units allow easy conversion between chemical species (e.g. Zn and Zn(NO3)2)? - Which units express concentrations in numbers with easily expressed magnitudes? - Suppose you have an analyte for which you don't know the molar…
None
How will you prepare the following buffers? 2.5 L of 1.5M buffer, pH = 10.5 from NH4Cl and NH3

Chapter 12 Solutions

PKG ORGANIC CHEMISTRY

Ch. 12 - Problem 12.11 (a) Draw the structure of a compound...Ch. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Problem 12.14 Draw the products of each...Ch. 12 - Prob. 12.15PCh. 12 - Problem 12.16 Draw all stereoisomers formed when...Ch. 12 - Prob. 12.17PCh. 12 - Problem 12.18 Draw the products formed when both...Ch. 12 - Problem 12.19 Draw the products formed when each...Ch. 12 - Prob. 12.20PCh. 12 - Prob. 12.21PCh. 12 - Problem 12.22 Draw the products formed when each...Ch. 12 - Prob. 12.23PCh. 12 - Problem 12.24 Draw the organic products in each of...Ch. 12 - Prob. 12.25PCh. 12 - Prob. 12.26PCh. 12 - Problem 12.27 Draw the products of each Sharpless...Ch. 12 - Prob. 12.28PCh. 12 - 12.29 Draw the products formed when A is treated...Ch. 12 - Prob. 12.30PCh. 12 - 12.31 Devise a synthesis of the following compound...Ch. 12 - Prob. 12.32PCh. 12 - Prob. 12.33PCh. 12 - Prob. 12.34PCh. 12 - Prob. 12.35PCh. 12 - Prob. 12.36PCh. 12 - 12.37 Stearidonic acid (C18H28O2) is an...Ch. 12 - Draw the organic products formed when cyclopentene...Ch. 12 - Draw the organic products formed when allylic...Ch. 12 - Draw the organic products formed in each reaction....Ch. 12 - Prob. 12.41PCh. 12 - Prob. 12.42PCh. 12 - Prob. 12.43PCh. 12 - What alkene is needed to synthesize each 1,2-diol...Ch. 12 - Prob. 12.45PCh. 12 - 12.46 (a)What product is formed in Step [1] of the...Ch. 12 - Draw the products formed after Steps 1 and 2 in...Ch. 12 - 12.48 Draw the products formed in each oxidative...Ch. 12 - What alkene or alkyne yields each set of products...Ch. 12 - Prob. 12.50PCh. 12 - Prob. 12.51PCh. 12 - Prob. 12.52PCh. 12 - Prob. 12.53PCh. 12 - 12.54 An unknown compound A of molecular formula ...Ch. 12 - 12.55 DHA is a fatty acid derived from fish oil...Ch. 12 - Prob. 12.56PCh. 12 - 12.57 Draw the product of each asymmetric...Ch. 12 - 12.58 Epoxidation of the following allylic alcohol...Ch. 12 - Prob. 12.59PCh. 12 - 12.60 Identify A in the following reaction...Ch. 12 - Prob. 12.61PCh. 12 - 12.62 It is sometimes necessary to isomerize a cis...Ch. 12 - 12.63 Devise a synthesis of each compound from...Ch. 12 - Prob. 12.64PCh. 12 - Prob. 12.65PCh. 12 - 12.66 Devise a synthesis of each compound from the...Ch. 12 - Prob. 12.67PCh. 12 - Prob. 12.68PCh. 12 - 12.69 Devise a synthesis of each compound from as...Ch. 12 - Prob. 12.70PCh. 12 - Prob. 12.71PCh. 12 - 12.72 Draw a stepwise mechanism for the following...Ch. 12 - Prob. 12.73PCh. 12 - Prob. 12.74PCh. 12 - 12.75 Sharpless epoxidation of allylic alcohol X...
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning