
Concept explainers
(a)
Interpretation:
The liquid among the following pair that has a higher vapor pressure at a given temperature is to be determined.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The vapor pressure of a compound decreases when the strength of intermolecular forces present between the molecules. The vaporization of a liquid occurs when the intermolecular forces between the molecules break and the molecules are free to vaporize. The increasing order of strength is as follows:
(b)
Interpretation:
The liquid among the following pair that has a higher vapor pressure at a given temperature is to be determined.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The vapor pressure of a compound decreases when the strength of intermolecular forces present between the molecules. The vaporization of a liquid occurs when the intermolecular forces between the molecules break and the molecules are free to vaporize. The increasing order of strength is as follows:
(c)
Interpretation:
The liquid among the following pair that has the higher vapor pressure at a given temperature is to be determined.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The vapor pressure of a compound decreases when the strength of intermolecular forces present between the molecules. The vaporization of a liquid occurs when the intermolecular forces between the molecules break and the molecules are free to vaporize. The increasing order of strength is as follows:

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
Chemistry: The Molecular Nature of Matter and Change
- > H₂C=C-CH2-CH3 B. H₂O Pt C. + H2 + H₂O H D. 16. Give the IUPAC name for each of the following: B. Cl Cl c. Cl Cl 17. Draw the line-angle formula for each of the following compounds: 1. phenol 2. 1,3-dichlorobenzene 3. 4-ethyltoluene < Previous Submit Assignment Next ▸arrow_forwardno Ai walkthroughsarrow_forwardThe answer is shown. What is the reaction mechanism to arrive at the answer?arrow_forward
- no Ai walkthroughsarrow_forwardConsider the following nucleophilic substitution reaction. The compound listed above the arrow is the solvent for the reaction. If nothing is listed over the arrow, then the nucleophile is also the solvent for the reaction. Part 1 of 2 Br CH,CN + I¯ What is the correct mechanism for the reaction? Select the single best answer. @SN2 ○ SN 1 Part: 1/2 Part 2 of 2 Draw the products for the reaction. Include both the major organic product and the inorganic product. If more than one stereoisomer is possible, draw only one stereoisomer. Include stereochemistry where relevant. Click and drag to start drawing a structure. X હૈarrow_forward20.33 Think-Pair-Share (a) Rank the following dienes and dienophiles in order of increasing reactivity in the Diels-Alder reaction. (i) CO₂Et (ii) COEt || CO₂Et MeO MeO (b) Draw the product that results from the most reactive diene and most reactive dienophile shown in part (a). (c) Draw a depiction of the orbital overlap involved in the pericyclic reaction that oc- curs between the diene and dienophile in part (b). (d) Is the major product formed in part (b) the endo or exo configuration? Explain your reasoning.arrow_forward
- 20.40 The following compound undergoes an intramolecular Diels-Alder reaction to give a tricyclic product. Propose a structural formula for the product. CN heat An intramolecular Diels-Alder adductarrow_forwardWhat is the reaction mechanism for this? Can this even be done without a base?arrow_forwardWhat is the reaction mechanism for this?arrow_forward
- What is the reaction mechanism for this?arrow_forwardWhat is the reaction mechanism for this?arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. + Drawing Arrows CH3ONA, CH3OH heat : Br:O Na → H H Br Na + H H H H H :0: .H + Undo Reset Done Q CH3 Drag To Pan +arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





