Concept explainers
(a)
Interpretation:
The mass spectrum fragmentation of ethyl bromide at
Concept introduction:
In mass spectroscopy, compounds can be identified on the basis of mass of compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. This technique did not interact with
Answer to Problem 12.42AP
The peak at
Explanation of Solution
The molecule ethyl bromide contains carbon, hydrogen, bromide atoms. In this molecule carbon and hydrogen mainly exist in one isotope form
Figure 1
The peak at
The mass spectrum fragmentation of ethyl bromide at
(b)
Interpretation:
The mass spectrum fragmentation of ethyl bromide at
Concept introduction:
In mass spectroscopy, compounds can be identified on the basis of mass of compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. This technique did not interact with electromagnetic radiation. Two peaks are used to identify the compound, first, the molecular ion peak which is the mass of the compound and second, the base peak which is the most abundant element peak. It may be same or different.
Answer to Problem 12.42AP
The peak at
Explanation of Solution
The mass of the compound,
Figure 2
The mass spectrum fragmentation of ethyl bromide at
(c)
Interpretation:
The mass spectrum fragmentation of ethyl bromide at
Concept introduction:
In mass spectroscopy, compounds can be identified on the basis of mass of compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. This technique did not interact with electromagnetic radiation. Two peaks are used to identify the compound, first, the molecular ion peak which is the mass of the compound and second, the base peak which is the most abundant element peak. It may be same or different.
Answer to Problem 12.42AP
The peak at
Explanation of Solution
When the ethyl bromide
Figure 3
The mass spectrum fragmentation of ethyl bromide at
(d)
Interpretation:
The mass spectrum fragmentation of ethyl bromide at
Concept introduction:
In mass spectroscopy, compounds can be identified on the basis of mass of compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. This technique did not interact with electromagnetic radiation. Two peaks are used to identify the compound, first, the molecular ion peak which is the mass of the compound and second, the base peak which is the most abundant element peak. It may be same or different.
Answer to Problem 12.42AP
The peak at
Explanation of Solution
When the ethyl bromide
Figure 4
The mass spectrum fragmentation of ethyl bromide at
(e)
Interpretation:
The mass spectrum fragmentation of ethyl bromide at
Concept introduction:
In mass spectroscopy, compounds can be identified on the basis of mass of compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. This technique did not interact with electromagnetic radiation. Two peaks are used to identify the compound, first, the molecular ion peak which is the mass of the compound and second, the base peak which is the most abundant element peak. It may be same or different.
Answer to Problem 12.42AP
The peak at
Explanation of Solution
When the ethyl bromide breaks into fragment, it releases ethyl cation
Figure 5
The mass spectrum fragmentation of ethyl bromide at
(f)
Interpretation:
The mass spectrum fragmentation of ethyl bromide at
Concept introduction:
In mass spectroscopy, compounds can be identified on the basis of mass of compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. This technique did not interact with electromagnetic radiation. Two peaks are used to identify the compound, first, the molecular ion peak which is the mass of the compound and second, the base peak which is the most abundant element peak. It may be same or different.
Answer to Problem 12.42AP
The peak at
Explanation of Solution
When the ethyl bromide breaks into fragment, it releases ethyl radical cation
Figure 6
The mass spectrum fragmentation of ethyl bromide at
(g)
Interpretation:
The mass spectrum fragmentation of ethyl bromide at
Concept introduction:
In mass spectroscopy, compounds can be identified on the basis of mass of compound. When the compound breaks into fragment then they can be distinguished from the other compounds. This technique is also used to differentiate the isotopes of compounds. This technique did not interact with electromagnetic radiation. Two peaks are used to identify the compound, first, the molecular ion peak which is the mass of the compound and second, the base peak which is the most abundant element peak. It may be same or different.
Answer to Problem 12.42AP
The peak at
Explanation of Solution
When the ethyl bromide breaks into fragment, it releases ethene cation
Figure 7
The mass spectrum fragmentation of ethyl bromide at
Want to see more full solutions like this?
Chapter 12 Solutions
Organic Chemistry Study Guide and Solutions
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY