
Concept explainers
Comparing Example 12.1 (Section 12.1) and Example 12.2 (Section 12.2), it seems that 700 N of air is exerting a downward force of 2.0 × 106 N on the floor. How is this possible?
EXAMPLE 12.1 THE WEIGHT OF A ROOMFUL OF AIR
Find the mass and weight of the air at 20°C in a living room with a 4.0 m × 5.0 m floor and a ceiling 3.0 m high, and the mass and weight of an equal volume of water.
SOLUTION
IDENTIFY and SET UP: We assume that the air density is the same throughout the room. (Air is less dense at high elevations than near sea level, but the density varies negligibly over the room’s 3.0-m height; see Section 12.2.) We use Eq. (12. 1) to relate the mass mair to the room’s volume V (which we’ll calculate) and the air density ρair (given in Table 12.1).
EXECUTE: We have V = (4.0 m) (5.0 m) (3.0 m) = 60m3, so from Eq. (12.1),
The mass and weight of an equal volume of water are
EVALUATE: A roomful of air weighs about the same as an average adult. Water is nearly a thousand times denser than air, so its mass and weight are larger by the same factor. The weight of a roomful of water would collapse the floor of an ordinary house.
EXAMPLE 12.2 THE FORCE OF AIR
In the room described in Example 12.1, what is the total downward force on the floor due to an air pressure of 1.00 atm?
SOLUTION
IDENTIFY and SET UP: This example uses the relationship among the pressure p of a fluid (air), the area A subjected to that pressure, and the resulting normal force F the fluid exerts. The pressure is uniform, so we use Eq. (12.3), F⊥ = pA, to determine F⊥. The floor is horizontal, so F⊥ is vertical (downward).
EXECUTE: We have A = (4.0 m) (5.0 m) = 20 m2, so from Eq. (12.3),
EVALUATE: Unlike the water in Example 12.1, F⊥ will not collapse the floor here, because there is an upward force of equal magnitude on the floor’s underside. If the house has a basement, this upward force is exerted by the air underneath the floor. In this case, if we ignore the thickness of the floor, the net force due to air pressure is zero.

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology with Diseases by Body System (5th Edition)
Chemistry: Structure and Properties (2nd Edition)
Anatomy & Physiology (6th Edition)
Introductory Chemistry (6th Edition)
- I need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could bearrow_forwardQuestion 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forwardE1 R₁ w 0.50 20 Ω 12 R₁₂ ww ΒΩ R₂ 60 E3 C RA w 15 Ω E2 0.25 E4 0.75 Ω 0.5 Ωarrow_forward
- What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





