
Concept explainers
(a)
Interpretation:
An example for Dipole-Dipole interaction, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(a)

Explanation of Solution
An example for Dipole-Dipole interaction is between
The intermolecular force existing between
The ions present in
These two ionic species constitute a dipole in the molecule. So, the interaction existing between
(b)
Interpretation:
An example for Dipole-induced dipole, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(b)

Explanation of Solution
An example for Dipole-induced dipole interaction is between a helium atom (non-polar species) and a polar molecule which is in proximity to it.
The intermolecular force existing between a polar molecule and a helium atom is Dipole-induced dipole interaction.
A polar molecule has permanent dipole moment which can cause distortion to the spherical electronic distribution of helium atom. The extend of distortion depends on the strength of the polarizability of the polar molecular species. The distortion caused in the helium atom is the dipole moment which has been induced or created by the interaction with a polar molecule. So such an interaction is known as dipole-induced-dipole moment.
(c)
Interpretation:
An example for Ion-Dipole interaction, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(c)

Explanation of Solution
An example for Ion-Dipole interaction is between metal ions and water molecules which can be observed in the aqueous solutions of metal ions.
In the aqueous solutions of metal ions, metal ions are ionic species and water molecules are polar molecules. So, water molecules possess permanent dipole moment. Hence, the interaction between metal ions and water molecules is Ion-Dipole interaction.
(d)
Interpretation:
An example for dispersion forces, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(d)

Explanation of Solution
An example for dispersion force is between
(e)
Interpretation:
An example for Van der waals forces, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(e)

Explanation of Solution
Van der waals forces are intermolecular forces which are of two types: Stronger and weaker.
Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
An example for Dipole-Dipole interaction is between
An example for dispersion force is between
Want to see more full solutions like this?
Chapter 12 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- Indicate the product(s) B and C that are formed in the reaction: HN' OCH HC1 B + mayoritario C minoritario OCH3arrow_forwardIndicate the product(s) that are formed in the reaction: NH-NH, OCH3 -H₂O OCH3arrow_forward21.38 Arrange the molecules in each set in order of increasing acidity (from least acidic to most acidic). OH OH SH NH2 8 NH3 OH (b) OH OH OH (c) & & & CH3 NO2 21.39 Explain the trends in the acidity of phenol and the monofluoro derivatives of phenol. OH OH OH OH PK 10.0 PK 8.81 PK 9.28 PK 9.81arrow_forward
- identify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward
- 3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forwardWhat are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forward
- A block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forwardCan u help me figure out the reaction mechanisms for these, idk where to even startarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





