
(a)
Interpretation:
The number of variables, in addition to the mass of each component and the temperature that must be specified to fully determine the intensive state of the system should be determined.
Concept Introduction:
The physical properties of the materials or a system can frequently be classified as either intensive or extensive, as how the property alters when the size or the extent of the system transforms. An intensive property is the one whose magnitude does not dependent on the size of the system while the extensive property is the one whose extent is additive for subsystems.
Intensive property is a physical attribute of the system which does not depend on the size or the quantity of material present in the system. For instance, temperature, refractive index, density, hardness of object etc.
On the contrary, the extensive attribute is additive for the subsystems, which means the system could be separated into any quantity of the subsystems, and the extensive attribute calculated for every subsystem; the value of the attribute for the system would be the total sum of the attribute for each of the subsystem. For instance, mass, volume, etc.
The minimum number of intensive variables which need to be defined in order to define the system is 2.
Given:
A closed vessel of fixed volume having equal masses of water, ethanol, and toluene at 70 °C. Three phases (two liquid and one vapor) are present.
Calculation:
The number of intensive variables which need to be specified can be calculated by using the following formula:
where, C is number of components in the system (= 3), P is number of phases in the system (= 3), F is the degree of system
The degree of freedom is 2. Hence, the minimum number of intensive variables which need to be defined to define the system is 2.

Answer to Problem 12.1P
The minimum number of intensive variables which need to be defined in order to define the system is 2.
Explanation of Solution
Given:
A closed vessel of fixed volume having equal masses of water, ethanol, and toluene at 70 °C. Three phases (two liquid and one vapor) are present.
Calculation:
The number of intensive variables which need to be specified can be calculated by using the following formula:
where, C is number of components in the system (= 3), P is number of phases in the system (= 3), F is the degree of system
The degree of freedom is 2. Hence, the minimum number of intensive variables which need to be defined to define the system is 2.
(b)
Interpretation:
Number of variables, in addition to the mass of each component and the temperature that must be specified to fully determine the extensive state of the system.
Concept Introduction:
The physical properties of the materials or a system can frequently be classified as either intensive or extensive, as how the property alters when the size or the extent of the system transforms. An intensive property is the one whose magnitude does not dependent on the size of the system while the extensive property is the one whose extent is additive for subsystems.
Intensive property is a physical attribute of the system which does not depend on the size or the quantity of material present in the system. For instance, temperature, refractive index, density, hardness of object etc.
On the contrary, the extensive attribute is additive for the subsystems, which means the system could be separated into any quantity of the subsystems, and the extensive attribute calculated for every subsystem; the value of the attribute for the system would be the total sum of the attribute for each of the subsystem. For instance, mass, volume, etc.

Answer to Problem 12.1P
There is no requirement to define the additional variables to describe the extensive state of the system.
Explanation of Solution
Given:
A closed vessel of fixed volume having equal masses of water, ethanol, and toluene at 70 °C. Three phases (two liquid and one vapor) are present.
The external variables do not help in determining the state of the system. These variables only aid us to characterize the system.
(c)
Interpretation:
Whether the increase in temperature of the system to 72 °C will affect any, intensive or extensive coordinates of the system or not.
Concept Introduction:
The physical properties of the materials or a system can frequently be classified as either intensive or extensive, as how the property alters when the size or the extent of the system transforms. An intensive property is the one whose magnitude does not dependent on the size of the system while the extensive property is the one whose extent is additive for subsystems.
Intensive property is a physical attribute of the system which doesn’t depend on the size or the quantity of material present in the system. For instance, temperature, refractive index, density, hardness of object etc.
On the contrary, the extensive attribute is additive for the subsystems, which means the system could be separated into any quantity of the subsystems, and the extensive attribute calculated for every subsystem; the value of the attribute for the system would be the total sum of the attribute for each of the subsystem. For instance, mass, volume, etc.
The extensive property does not affect the system if the temperature of the system is raised from 70 °C to 72 °C, as these properties only distinguish the system yet to describe the system, we need intensive variables.
Given:
A closed vessel of fixed volume having equal masses of water, ethanol, and toluene at 70 °C. Three phases (two liquid and one vapor) are present.
Explanation:
The temperature of the system is raised to 72 °C. Suppose any intensive or extensive variables of the system stay unchanged.
The system can be described at any temperature (T) with the utilization of intensive attributes, but as the temperature is raised, it will cause an alteration in the intensive property which isindependent of mass. If the intensive property of the system remains unchanged, it can lead to unfeasibility of the process that the system undergoes.

Answer to Problem 12.1P
The extensive property does not affect the system if the temperature of the system is raised from 70 °C to 72 °C, as these properties only distinguish the system yet to describe the system, we need intensive variables.
Explanation of Solution
Given:
A closed vessel of fixed volume having equal masses of water, ethanol, and toluene at 70 °C. Three phases (two liquid and one vapor) are present.
The temperature of the system is raised to 72 °C. Suppose any intensive or extensive variables of the system stay unchanged.
The system can be described at any temperature (T) with the utilization of intensive attributes, but as the temperature is raised, it will cause an alteration in the intensive property which isindependent of mass. If the intensive property of the system remains unchanged, it can lead to unfeasibility of the process that the system undergoes.
Want to see more full solutions like this?
Chapter 12 Solutions
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
- Untuk sistem gas etilena (1)/propilena (2), estimasi (f^1, f^2, $^1, dan ^2 pada t = 150°C, P = 30 bar, dan y1 = 0,35; kij = 0. (a) Dengan menerapkan Persamaan (10.63). (b) Dengan asumsi bahwa campuran adalah lingkungan idealarrow_forwardOnly focus on H(3), which is the specific enthalpy for nitrogen gas. chemical engineeringarrow_forwardchemical engineering. Only focus on H(3), which is the nitrogen gas. Start with the reference state to the process state. Be thorough to the fullestarrow_forward
- acetone with these parameters: po:=101325; #Standard atmospheric pressure in PaTfo:=273.15-94.45; #Melting temperature in K Tvo:=273.15+56.15; #Boiling temperature in K Hv:=31270; #Enthalpy of vaporization in J/molR:=8.314; #Gas Constant in J/mol*KNLe:=1.76; #Lewis number for acetoneMw:= 0.05808 ; #kg/mol molecular weight of acetoneW0:= 0.15; Wsp:=0.005;Am:= 0.12; #m^2/kg dry solid for the exposed wet areah:= 11; #W/m^2K for heat transfer coefficienttau__min:= Hv*(W0-Wsp)/Mw/Am/h/(T8-TS); tau__min/60;arrow_forwardchemical engineering Material-energy balance. Only focus on the nitrogen gas, which is H(3)arrow_forward1. The settling chamber, shown schematically in Figure 2E1.1, is used as a primary separation device in the removal of dust particles of density 1500 kg/m³ from a gas of density 0:7 kg/m³ and viscosity 1.90 x 10-5 Pa s. Gas inlet Elevation Gas Gas exit exit H Collection surface -W Section X-X Dimensions: H=3m L = 10 m W=2m Figure 2E1.1 Schematic diagram of settling chamber Assuming Stokes' law applies, show that the efficiency of collection of particles of size x is given by the expression collection efficiency, x = x²8(pp - Pi)L 18μHU where U is the uniform gas velocity through the parallel-sided section of the chamber. State any other assumptions made. (b) What is the upper limit of particle size for which Stokes' law applies? (c) When the volumetric flow rate of gas is 0.9 m³/s, and the dimensions of the chamber are those shown in Figure 2E1.1, determine the collection efficiency for spherical particles of diameter 30 mm.arrow_forward
- Can you answer this sequantially correct like show me the full process. Also, since it is chemical engineering related problem a perry's handbook is used. Thank youarrow_forwardchemical engineering Demonstrate how each specific enthalpy was calculated, from the reference state to the process state. Be thorough to the fullest. This is a material-energy balance. The answers are H(1) = 35.7 KJ/kmol, H(2) = 32.0 KJ/kmol, and H(3) = -1.26 KJ/kmol.arrow_forwardheat and mass transfer:arrow_forward
- Chemical Engineering. Be thorough to the fullest for the three enthalpies. H(1) = 35.7 kj/kmol H(2) =32.0 Kj/kmol H(3)= -1.26 Kj/kmolarrow_forwardchemical engineering Only solve the specific enthalpies. Be thorough to the fullest for each calculationarrow_forwardDo question 9 please! Question 7 Is just there for reference!!arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





