Interpretation:
The general misconception that is adding salt in water helps to cook spaghetti faster should be explained. The boiling point of salted water should be calculated and the does this temperature increase will make more difference in cooking time should be identified.
Concept Introduction:
Boiling point is the temperature at which liquid turns into a gas. Example: boiling point of water is
Where,
The Boiling point elevation
Where,

Answer to Problem 12.144QP
The boiling point increase was calculated as
Explanation of Solution
The increase in boiling point of salted solution is calculated by first determining the concentration of salt in the salted water used to cook spaghetti.
Calculate
Assuming that one table spoon of salt contains
Calculate mass of water:
The mass of water determined by assuming one table spoon of salt added to 5 quarts of water.
Calculate molality of the salted solution:
The molality of solution was calculated by dividing solute moles and mass of solvent.
Calculate the increase in boiling point:
Generally, i is the value that denotes the number of ions, those are obtained after dissociation of electrolyte.
For example the i value for
The boiling point increase was calculated by multiplying the Von’t Hoff’s factor of
The general misconception that is adding salt in water helps to cook spaghetti faster was explained. The boiling point of salted water was calculated and this temperature increase does not make more difference in cooking time.
Want to see more full solutions like this?
Chapter 12 Solutions
ALEKS 360; 18WKS F/ GEN. CHEMISTRY >I<
- Please label this HNMRarrow_forwardConsider the following gas chromatographs of Compound A, Compound B, and a mixture of Compounds A and B. Inject A B mixture Area= 9 Area = 5 Area = 3 Area Inject . མི། Inject J2 What is the percentage of Compound B in the the mixture?arrow_forwardRank these according to stability. CH3 H3C CH3 1 CH3 H3C 1 most stable, 3 least stable O 1 most stable, 2 least stable 2 most stable, 1 least stable O2 most stable, 3 least stable O3 most stable, 2 least stable O3 most stable, 1 least stable CH3 2 CH3 CH3 H₂C CH3 3 CH3 CHarrow_forward
- Consider this IR and NMR: INFRARED SPECTRUM TRANSMITTANCE 0.8- 0.6 0.4 0.2 3000 10 9 8 00 HSP-00-541 7 CO 6 2000 Wavenumber (cm-1) сл 5 ppm 4 M Which compound gave rise to these spectra? N 1000 1 0arrow_forwardConsider this reaction (molecular weights are under each compound): HC=CH + 2 HCI --> C2H4Cl 2 MW = 26 36.5 99 If 4.4 g of HC=CH are reacted with 110 mL of a 2.3 M HCI solution, and 6.0 g of product are actually produced, what is the percent yield?arrow_forwardWhat is the name of the major product of this reaction? OH CH3 H₂SO4, heat 1-methylcyclohexene O2-methyl-1-cyclohexene O 3-mthylcyclohexene 1-methyl-2-cyclohexenearrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





