Biochemistry
6th Edition
ISBN: 9781305577206
Author: Reginald H. Garrett, Charles M. Grisham
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 10P
Interpretation Introduction
Interpretation:
The experimental protocol on the basis of the yeast two-hybrid system that would allow the identification of proteins that might interact with any protein of interest is to be described.
Concept introduction:
A molecular biology technique that is used for the detection of protein-protein interactions by testing physical interactions like binding between two proteins or a single protein and a molecule of DNA, is known as two-hybrid screening or yeast two-hybrid technique.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionKnowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. An Estimation of Minimal Genome Size for a Living Cell Studies of existing cells to determine the minimum number of genes for a living cell have suggested that 206 genes are sufficient. If the ratio of protein-coding genes to non-protein-coding genes is the same in this minimal organism as the genes of Mycoplasma genitulium, how many proteins are represented in these 206 genes. How many base pairs would be required to form the genome of this minimal organism if the genes are the same size as M genilalium genes? (Section 1.5)arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. (Research Problem) The Nature and Roles of Linear Motifs in Proteins In addition to domains and modules, there are other significant sequence patterns in proteins—known as linear motifs—that are associated with a particular function. Consult the biochemical literature to answer the following questions: 1. What are linear motifs? 2. How are they different from domains?. 3. What are their functions? 4. How can they be characterized? 5. There are several papers that are good starting points for this problem. Neduva, V., and Russell, R., 2005. Linear motifs: evolutionary interaction switches. FEBS Letters 579:3342-3345. Gibson, T., 2009. Cell regulation: determined to signal discrete cooperation. Trends in Biochemical Sciences 34:471-482. Diella, K. Haslam, N., Chica., C. et aL, 2009. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Frontiers of Bioscience 13:6580-6603.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Preparing cDNA Libraries from Different Cells Describe an experimental protocol for the preparation of to cDNA libraries, one from anaerobically grown yeast cells and the second from aerobically grown yeast cell.arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. A Simple Genome and Its Protein-Encoding Capacity The genome of the Mycoplasma genitalium consists of 523 genes, encoding 484 proteins, in just 5S0.U74 base pairs (see Table 1.6). What fraction of the M. genitalium genes encode proteins? What do you think the other genes encode? If the fraction of base pairs devoted to protein-coding genes is the same as the fraction of the total genes that they represent, what is tlie average number of base pairs per protein-coding gene? If it takes three base pairs to specify an amino acid in a protein, how many amino acids are found in the average M. genitalium protein? If each amino acid contributes, on average, 12U daltons to the mass of a protein, what is the mass of an average M. genitalium protein? (Section 1.5)arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Interpreting Kinetics Experiments from Graphical Patterns The following graphical patterns obtained from kinetic experiments have several possible interpretations depending on the nature of the experiment and the variables being plotted. Give at least two possibilities for each.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Evaluation of -Helices in Proteins The hem agglutinin protein in influenza virus contains a remarkably long -helix, with 53 residues. How long is this -helix (in nm)? How many turns does this helix have? The typical residue in an -helix is involved in two H bonds. How many H bonds are present in this helix?arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Calculate the Frequency of Occurrence of an RNAi Target Sequence The RNAs acting in RNAi are about 21 nucleotides long. To judge whether it is possible to uniquely target a particular gene with a RNA of this size, consider The following calculation: What is the expected frequency of occurrence of a specific 21-nucleotide sequence?arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. (Historical Context) The Third Person of the -Helix Publication Who was Herman Branson? What was his role in the elucidation of the structure of the or-helix'.' Did he receive sufficient credit and recognition for his contributions? And how did the rest of his career unfold? Do a Google search on Herman Branson to learn about his life, and read the article by David Eisenberg under Further Reading. You may also wish to examine the original paper by Pauling, Corey, and Branson, as well as the following Web site: http://www.pirns. org/sitelmisclclassicsl..shtml Pauling, L., Corey, R. B., and Branson, H. R., 1951. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences, USA 37:235-240.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Cells as Steady-State Systems Describe what is meant by the phrase "cells tire steady-state systems." (Section 1.4)arrow_forward
- Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. CRISPR/Cas9: Design of a gRNA to Target the Human PVALB Gene The human PVALB gene, which encodes the Ca2+-binding protein parvalbumin, can be Targeted by CRISPR/Cas9, at the protospacer sequence - ATGCAGGAGGGTGGCGAGAGGGGCCGAGAT- followed by a -TGG-PAM trinucleotide. Give the sequence of the spacer region of a gRNA that will target the complementary DNA strand at this site. Include at the 3'-end of your gRNA sequence a region that will form a stem-loop structure with a 5'-AGCAUAGCUGUAAAAC- sequence downstream in the gRNA to create the dsRNA-binding site for Cas9.arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Calculating Tms and Separating DNA Molecules That Differ in G:C Content At 0.2 M Na+, the melting temperature of double-stranded DNA is given by the formula, Tm = 69.3 + 0 41 (% G + C). The DNAs from mice and rats have (G + C) contents of 44% and 40%, respectively. Calculate the Tms for these DNAs in 0.2 M NaCl. If samples of these DNAs were inadvertently mixed, how might they be separated from one another?arrow_forwardAnswers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Structural complementarity is the key to molecular recognition, a lesson learned in Chapter 1. The principle of structural complementarity is relevant to answering problems 5, 6, 7,11, 12, and 19. The quintessential example of structural complementarity in all of biology is the DNA double helix. What features of the DNA double helix exemplify structural complementarity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license