Concept explainers
In Problems 27–30, (a) construct a histogram for the data using the given number of classes to show that the data are approximately
28. Repeat Exercise 27 for the reaction times of 25 subjects with a zero blood alcohol level:
0.7 | 1.1 | 1.1 | 1.2 | 1.4 | 1.4 | 1.4 | 1.5 | 1.5 |
1.5 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 |
t.9 | 1.9 | 2.1 | 2.2 | 2.3 | 2.5 | 2.6 |
27. A researcher is studying reaction times in adult subjects that are alcohol-impaired in an effort to study the effects of impairment on driving. The amount of time 25 randomly selected adults take to react to a stimulus when they have a blood alcohol level of 0.08 was recorded and is displayed below. Use live classes; find the probability that a randomly selected driver with a blood alcohol of 0.08 will lake less than 1.5 seconds Lo react, and the probability that he or she will take between 2 and 4 seconds to react.
1.2 | 1.5 | 1.6 | 1.6 | 1.7 | 1.9 | 2.0 | 2.1 | 2.1 |
2.2 | 2.2 | 2.2 | 2.3 | 2.4 | 2.4 | 2.5 | 2.5 | 2.7 |
2.8 | 2.8 | 2.8 | 3.0 | 3.1 | 3.3 | 3.5 |
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
SOBECKI ALEKS ACCESS 360 OLA MATH OUR WR
- 9. (a) Use pseudocode to describe an algo- rithm for determining the value of a game tree when both players follow a minmax strategy. (b) Suppose that T₁ and T2 are spanning trees of a simple graph G. Moreover, suppose that ₁ is an edge in T₁ that is not in T2. Show that there is an edge 2 in T2 that is not in T₁ such that T₁ remains a spanning tree if ₁ is removed from it and 2 is added to it, and T2 remains a spanning tree if 2 is removed from it and e₁ is added to it. (c) Show that a degree-constrained spanning tree of a simple graph in which each vertex has degree not exceeding 2 2 consists of a single Hamiltonian path in the graph.arrow_forwardChatgpt give wrong answer No chatgpt pls will upvotearrow_forward@when ever one Point sets in x are closed a collection of functions which separates Points from closed set will separates Point. 18 (prod) is product topological space then VaeA (xx, Tx) is homeomorphic to sul space of the Product space (Txa, prod). KeA © The Bin Projection map B: Tx XP is continuous and open but heed hot to be closed. A collection (SEA) of continuos function oha topolgical Space X se partes Points from closed sets inx iff the set (v) for KEA and Vopen set in Xx from a base for top on x.arrow_forward
- Simply:(p/(x-a))-(p/(x+a))arrow_forwardMake M the subject: P=2R(M/√M-R)arrow_forwardExercice 2: Soit & l'ensemble des nombres réels. Partie A Soit g la fonction définie et dérivable sur R telle que, pour tout réel x. g(x) = - 2x ^ 3 + x ^ 2 - 1 1. a) Étudier les variations de la fonction g b) Déterminer les limites de la fonction gen -oo et en +00. 2. Démontrer que l'équation g(x) = 0 admet une unique solution dans R, notée a, et que a appartient à | - 1 ;0|. 3. En déduire le signe de g sur R. Partie B Soit ƒ la fonction définie et dérivable sur R telle que, pour tout réel s. f(x) = (1 + x + x ^ 2 + x ^ 3) * e ^ (- 2x + 1) On note f la fonction dérivée de la fonction ƒ sur R. 1. Démontrer que lim x -> ∞ f(x) = - ∞ 2. a) Démontrer que, pour tout x > 1 1 < x < x ^ 2 < x ^ 3 b) En déduire que, pour x > 1 0 < f(x) < 4x ^ 3 * e ^ (- 2x + 1) c) On admet que, pour tout entier naturel n. lim x -> ∞ x ^ n * e ^ (- x) = 0 Vérifier que, pour tout réel x, 4x ^ 3 * e ^ (- 2x + 1) = e/2 * (2x) ^ 3 * e ^ (-2x) puis montrer que: lim x -> ∞ 4x ^ 3 * e…arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill