Calculus: Special Edition: Chapters 1-5 (w/ WebAssign)
6th Edition
ISBN: 9781524908102
Author: SMITH KARL J, STRAUSS MONTY J, TODA MAGDALENA DANIELE
Publisher: Kendall Hunt Publishing
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.5, Problem 8PS
a.
To determine
To find the partial derivatives
Where,
b.
To determine
To find the partial derivatives
Where,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. Suppose a 4D space exists for variables a, b, c, and d, where a is a function of b, c, and d, then, the correct expression
for finding the partial derivative of a with respect to b is (da/ab)..
5. If the gradient of f(r, y) at (1, 2) is 2i – 2j, then the maximum and minimum values for a directional
derivative of f at (1, 2) are respectively
A. 2/2 and -V2 B. -2/2 and v2 C. 2/2 and 2/2 D. 2/2 and -2v2
6. Suppose the second-order partial derivatives of the function f(r, y) exists at thr critical point (0,0).
Which of the following one is true for the critical point to be maximum?
A. frr (0,0) = 2 fyy (0,0) = 2 and rry(0,0) = 4
C. frz (0,0) = 4 fyy(0,0) = 4 and Iry(0,0) = 4
B. frz (0,0) = 2 fyy (0,0) = 2 and rry(0,0) = 2
D. frz(0,0) = -4 fyy (0,0) = -4 and rry(0,0) = 4
%3D
%3D
%3D
Below is a function f. We are interested in how changes in the values of the input variables x, y or
parameters a, b, c affect f. To that aim, we writef as a function of both its input variables and its
parameters, using the notation f(x, y; a, b, c). The “gradient of f towards v", denoted as Vyf, is
the vector of all partial derivatives of f to the variables/parameters listed in v. Fill in the boxes.
• f(x, y; a, b, c) = a exp(2x) + by² + cxy
• Vxyf(x, y; a, b, c) =
Vabef(x, y; a, b, c) =
• If ô, ɛ are very small real numbers, what is f(1,2; 3,4+ 8,5 + e) – f(1,2; 3,4,5)
approximately? Explain how you obtained the answer.
Answer:
Explanation:
Chapter 11 Solutions
Calculus: Special Edition: Chapters 1-5 (w/ WebAssign)
Ch. 11.1 - Prob. 1PSCh. 11.1 - Prob. 2PSCh. 11.1 - Prob. 3PSCh. 11.1 - Prob. 4PSCh. 11.1 - Prob. 5PSCh. 11.1 - Prob. 6PSCh. 11.1 - Prob. 7PSCh. 11.1 - Prob. 8PSCh. 11.1 - Prob. 9PSCh. 11.1 - Prob. 10PS
Ch. 11.1 - Prob. 11PSCh. 11.1 - Prob. 12PSCh. 11.1 - Prob. 13PSCh. 11.1 - Prob. 14PSCh. 11.1 - Prob. 15PSCh. 11.1 - Prob. 16PSCh. 11.1 - Prob. 17PSCh. 11.1 - Prob. 18PSCh. 11.1 - Prob. 19PSCh. 11.1 - Prob. 20PSCh. 11.1 - Prob. 21PSCh. 11.1 - Prob. 22PSCh. 11.1 - Prob. 23PSCh. 11.1 - Prob. 24PSCh. 11.1 - Prob. 25PSCh. 11.1 - Prob. 26PSCh. 11.1 - Prob. 27PSCh. 11.1 - Prob. 28PSCh. 11.1 - Prob. 29PSCh. 11.1 - Prob. 30PSCh. 11.1 - Prob. 31PSCh. 11.1 - Prob. 32PSCh. 11.1 - Prob. 33PSCh. 11.1 - Prob. 34PSCh. 11.1 - Prob. 35PSCh. 11.1 - Prob. 36PSCh. 11.1 - Prob. 37PSCh. 11.1 - Prob. 38PSCh. 11.1 - Prob. 39PSCh. 11.1 - Prob. 40PSCh. 11.1 - Prob. 41PSCh. 11.1 - Prob. 42PSCh. 11.1 - Prob. 43PSCh. 11.1 - Prob. 44PSCh. 11.1 - Prob. 45PSCh. 11.1 - Prob. 46PSCh. 11.1 - Prob. 47PSCh. 11.1 - Prob. 48PSCh. 11.1 - Prob. 49PSCh. 11.1 - Prob. 50PSCh. 11.1 - Prob. 51PSCh. 11.1 - Prob. 52PSCh. 11.1 - Prob. 53PSCh. 11.1 - Prob. 54PSCh. 11.1 - Prob. 55PSCh. 11.1 - Prob. 56PSCh. 11.1 - Prob. 57PSCh. 11.1 - Prob. 58PSCh. 11.1 - Prob. 59PSCh. 11.1 - Prob. 60PSCh. 11.2 - Prob. 1PSCh. 11.2 - Prob. 2PSCh. 11.2 - Prob. 3PSCh. 11.2 - Prob. 4PSCh. 11.2 - Prob. 5PSCh. 11.2 - Prob. 6PSCh. 11.2 - Prob. 7PSCh. 11.2 - Prob. 8PSCh. 11.2 - Prob. 9PSCh. 11.2 - Prob. 10PSCh. 11.2 - Prob. 11PSCh. 11.2 - Prob. 12PSCh. 11.2 - Prob. 13PSCh. 11.2 - Prob. 14PSCh. 11.2 - Prob. 15PSCh. 11.2 - Prob. 16PSCh. 11.2 - Prob. 17PSCh. 11.2 - Prob. 18PSCh. 11.2 - Prob. 19PSCh. 11.2 - Prob. 20PSCh. 11.2 - Prob. 21PSCh. 11.2 - Prob. 22PSCh. 11.2 - Prob. 23PSCh. 11.2 - Prob. 24PSCh. 11.2 - Prob. 25PSCh. 11.2 - Prob. 26PSCh. 11.2 - Prob. 27PSCh. 11.2 - Prob. 28PSCh. 11.2 - Prob. 29PSCh. 11.2 - Prob. 30PSCh. 11.2 - Prob. 31PSCh. 11.2 - Prob. 32PSCh. 11.2 - Prob. 33PSCh. 11.2 - Prob. 34PSCh. 11.2 - Prob. 35PSCh. 11.2 - Prob. 36PSCh. 11.2 - Prob. 37PSCh. 11.2 - Prob. 38PSCh. 11.2 - Prob. 39PSCh. 11.2 - Prob. 40PSCh. 11.2 - Prob. 41PSCh. 11.2 - Prob. 42PSCh. 11.2 - Prob. 43PSCh. 11.2 - Prob. 44PSCh. 11.2 - Prob. 45PSCh. 11.2 - Prob. 46PSCh. 11.2 - Prob. 47PSCh. 11.2 - Prob. 48PSCh. 11.2 - Prob. 49PSCh. 11.2 - Prob. 50PSCh. 11.2 - Prob. 51PSCh. 11.2 - Prob. 52PSCh. 11.2 - Prob. 53PSCh. 11.2 - Prob. 54PSCh. 11.2 - Prob. 55PSCh. 11.2 - Prob. 56PSCh. 11.2 - Prob. 57PSCh. 11.2 - Prob. 58PSCh. 11.2 - Prob. 59PSCh. 11.2 - Prob. 60PSCh. 11.3 - Prob. 1PSCh. 11.3 - Prob. 2PSCh. 11.3 - Prob. 3PSCh. 11.3 - Prob. 4PSCh. 11.3 - Prob. 5PSCh. 11.3 - Prob. 6PSCh. 11.3 - Prob. 7PSCh. 11.3 - Prob. 8PSCh. 11.3 - Prob. 9PSCh. 11.3 - Prob. 10PSCh. 11.3 - Prob. 11PSCh. 11.3 - Prob. 12PSCh. 11.3 - Prob. 13PSCh. 11.3 - Prob. 14PSCh. 11.3 - Prob. 15PSCh. 11.3 - Prob. 16PSCh. 11.3 - Prob. 17PSCh. 11.3 - Prob. 18PSCh. 11.3 - Prob. 19PSCh. 11.3 - Prob. 20PSCh. 11.3 - Prob. 21PSCh. 11.3 - Prob. 22PSCh. 11.3 - Prob. 23PSCh. 11.3 - Prob. 24PSCh. 11.3 - Prob. 25PSCh. 11.3 - Prob. 26PSCh. 11.3 - Prob. 27PSCh. 11.3 - Prob. 28PSCh. 11.3 - Prob. 29PSCh. 11.3 - Prob. 30PSCh. 11.3 - Prob. 31PSCh. 11.3 - Prob. 32PSCh. 11.3 - Prob. 33PSCh. 11.3 - Prob. 34PSCh. 11.3 - Prob. 35PSCh. 11.3 - Prob. 36PSCh. 11.3 - Prob. 37PSCh. 11.3 - Prob. 38PSCh. 11.3 - Prob. 39PSCh. 11.3 - Prob. 40PSCh. 11.3 - Prob. 41PSCh. 11.3 - Prob. 42PSCh. 11.3 - Prob. 43PSCh. 11.3 - Prob. 44PSCh. 11.3 - Prob. 45PSCh. 11.3 - Prob. 46PSCh. 11.3 - Prob. 47PSCh. 11.3 - Prob. 48PSCh. 11.3 - Prob. 49PSCh. 11.3 - Prob. 50PSCh. 11.3 - Prob. 51PSCh. 11.3 - Prob. 52PSCh. 11.3 - Prob. 53PSCh. 11.3 - Prob. 54PSCh. 11.3 - Prob. 55PSCh. 11.3 - Prob. 56PSCh. 11.3 - Prob. 57PSCh. 11.3 - Prob. 58PSCh. 11.3 - Prob. 59PSCh. 11.3 - Prob. 60PSCh. 11.4 - Prob. 1PSCh. 11.4 - Prob. 2PSCh. 11.4 - Prob. 3PSCh. 11.4 - Prob. 4PSCh. 11.4 - Prob. 5PSCh. 11.4 - Prob. 6PSCh. 11.4 - Prob. 7PSCh. 11.4 - Prob. 8PSCh. 11.4 - Prob. 9PSCh. 11.4 - Prob. 10PSCh. 11.4 - Prob. 11PSCh. 11.4 - Prob. 12PSCh. 11.4 - Prob. 13PSCh. 11.4 - Prob. 14PSCh. 11.4 - Prob. 15PSCh. 11.4 - Prob. 16PSCh. 11.4 - Prob. 17PSCh. 11.4 - Prob. 18PSCh. 11.4 - Prob. 19PSCh. 11.4 - Prob. 20PSCh. 11.4 - Prob. 21PSCh. 11.4 - Prob. 22PSCh. 11.4 - Prob. 23PSCh. 11.4 - Prob. 24PSCh. 11.4 - Prob. 25PSCh. 11.4 - Prob. 26PSCh. 11.4 - Prob. 27PSCh. 11.4 - Prob. 28PSCh. 11.4 - Prob. 29PSCh. 11.4 - Prob. 30PSCh. 11.4 - Prob. 31PSCh. 11.4 - Prob. 32PSCh. 11.4 - Prob. 33PSCh. 11.4 - Prob. 34PSCh. 11.4 - Prob. 35PSCh. 11.4 - Prob. 36PSCh. 11.4 - Prob. 37PSCh. 11.4 - Prob. 38PSCh. 11.4 - Prob. 39PSCh. 11.4 - Prob. 40PSCh. 11.4 - Prob. 41PSCh. 11.4 - Prob. 42PSCh. 11.4 - Prob. 43PSCh. 11.4 - Prob. 44PSCh. 11.4 - Prob. 45PSCh. 11.4 - Prob. 46PSCh. 11.4 - Prob. 47PSCh. 11.4 - Prob. 48PSCh. 11.4 - Prob. 49PSCh. 11.4 - Prob. 50PSCh. 11.4 - Prob. 51PSCh. 11.4 - Prob. 52PSCh. 11.4 - Prob. 53PSCh. 11.4 - Prob. 54PSCh. 11.4 - Prob. 55PSCh. 11.4 - Prob. 56PSCh. 11.4 - Prob. 57PSCh. 11.4 - Prob. 58PSCh. 11.4 - Prob. 59PSCh. 11.4 - Prob. 60PSCh. 11.5 - Prob. 1PSCh. 11.5 - Prob. 2PSCh. 11.5 - Prob. 3PSCh. 11.5 - Prob. 4PSCh. 11.5 - Prob. 5PSCh. 11.5 - Prob. 6PSCh. 11.5 - Prob. 7PSCh. 11.5 - Prob. 8PSCh. 11.5 - Prob. 9PSCh. 11.5 - Prob. 10PSCh. 11.5 - Prob. 11PSCh. 11.5 - Prob. 12PSCh. 11.5 - Prob. 13PSCh. 11.5 - Prob. 14PSCh. 11.5 - Prob. 15PSCh. 11.5 - Prob. 16PSCh. 11.5 - Prob. 17PSCh. 11.5 - Prob. 18PSCh. 11.5 - Prob. 19PSCh. 11.5 - Prob. 20PSCh. 11.5 - Prob. 21PSCh. 11.5 - Prob. 22PSCh. 11.5 - Prob. 23PSCh. 11.5 - Prob. 24PSCh. 11.5 - Prob. 25PSCh. 11.5 - Prob. 26PSCh. 11.5 - Prob. 27PSCh. 11.5 - Prob. 28PSCh. 11.5 - Prob. 29PSCh. 11.5 - Prob. 30PSCh. 11.5 - Prob. 31PSCh. 11.5 - Prob. 32PSCh. 11.5 - Prob. 33PSCh. 11.5 - Prob. 34PSCh. 11.5 - Prob. 35PSCh. 11.5 - Prob. 36PSCh. 11.5 - Prob. 37PSCh. 11.5 - Prob. 38PSCh. 11.5 - Prob. 39PSCh. 11.5 - Prob. 40PSCh. 11.5 - Prob. 41PSCh. 11.5 - Prob. 42PSCh. 11.5 - Prob. 43PSCh. 11.5 - Prob. 44PSCh. 11.5 - Prob. 45PSCh. 11.5 - Prob. 46PSCh. 11.5 - Prob. 47PSCh. 11.5 - Prob. 48PSCh. 11.5 - Prob. 49PSCh. 11.5 - Prob. 50PSCh. 11.5 - Prob. 51PSCh. 11.5 - Prob. 52PSCh. 11.5 - Prob. 53PSCh. 11.5 - Prob. 54PSCh. 11.5 - Prob. 55PSCh. 11.5 - Prob. 56PSCh. 11.5 - Prob. 57PSCh. 11.5 - Prob. 58PSCh. 11.5 - Prob. 59PSCh. 11.5 - Prob. 60PSCh. 11.6 - Prob. 1PSCh. 11.6 - Prob. 2PSCh. 11.6 - Prob. 3PSCh. 11.6 - Prob. 4PSCh. 11.6 - Prob. 5PSCh. 11.6 - Prob. 6PSCh. 11.6 - Prob. 7PSCh. 11.6 - Prob. 8PSCh. 11.6 - Prob. 9PSCh. 11.6 - Prob. 10PSCh. 11.6 - Prob. 11PSCh. 11.6 - Prob. 12PSCh. 11.6 - Prob. 13PSCh. 11.6 - Prob. 14PSCh. 11.6 - Prob. 15PSCh. 11.6 - Prob. 16PSCh. 11.6 - Prob. 17PSCh. 11.6 - Prob. 18PSCh. 11.6 - Prob. 19PSCh. 11.6 - Prob. 20PSCh. 11.6 - Prob. 21PSCh. 11.6 - Prob. 22PSCh. 11.6 - Prob. 23PSCh. 11.6 - Prob. 24PSCh. 11.6 - Prob. 25PSCh. 11.6 - Prob. 26PSCh. 11.6 - Prob. 27PSCh. 11.6 - Prob. 28PSCh. 11.6 - Prob. 29PSCh. 11.6 - Prob. 30PSCh. 11.6 - Prob. 31PSCh. 11.6 - Prob. 32PSCh. 11.6 - Prob. 33PSCh. 11.6 - Prob. 34PSCh. 11.6 - Prob. 35PSCh. 11.6 - Prob. 36PSCh. 11.6 - Prob. 37PSCh. 11.6 - Prob. 38PSCh. 11.6 - Prob. 39PSCh. 11.6 - Prob. 40PSCh. 11.6 - Prob. 41PSCh. 11.6 - Prob. 42PSCh. 11.6 - Prob. 43PSCh. 11.6 - Prob. 44PSCh. 11.6 - Prob. 45PSCh. 11.6 - Prob. 46PSCh. 11.6 - Prob. 47PSCh. 11.6 - Prob. 48PSCh. 11.6 - Prob. 49PSCh. 11.6 - Prob. 50PSCh. 11.6 - Prob. 51PSCh. 11.6 - Prob. 52PSCh. 11.6 - Prob. 53PSCh. 11.6 - Prob. 54PSCh. 11.6 - Prob. 55PSCh. 11.6 - Prob. 56PSCh. 11.6 - Prob. 57PSCh. 11.6 - Prob. 58PSCh. 11.6 - Prob. 59PSCh. 11.6 - Prob. 60PSCh. 11.7 - Prob. 1PSCh. 11.7 - Prob. 2PSCh. 11.7 - Prob. 3PSCh. 11.7 - Prob. 4PSCh. 11.7 - Prob. 5PSCh. 11.7 - Prob. 6PSCh. 11.7 - Prob. 7PSCh. 11.7 - Prob. 8PSCh. 11.7 - Prob. 9PSCh. 11.7 - Prob. 10PSCh. 11.7 - Prob. 11PSCh. 11.7 - Prob. 12PSCh. 11.7 - Prob. 13PSCh. 11.7 - Prob. 14PSCh. 11.7 - Prob. 15PSCh. 11.7 - Prob. 16PSCh. 11.7 - Prob. 17PSCh. 11.7 - Prob. 18PSCh. 11.7 - Prob. 19PSCh. 11.7 - Prob. 20PSCh. 11.7 - Prob. 21PSCh. 11.7 - Prob. 22PSCh. 11.7 - Prob. 23PSCh. 11.7 - Prob. 24PSCh. 11.7 - Prob. 25PSCh. 11.7 - Prob. 26PSCh. 11.7 - Prob. 27PSCh. 11.7 - Prob. 28PSCh. 11.7 - Prob. 29PSCh. 11.7 - Prob. 30PSCh. 11.7 - Prob. 31PSCh. 11.7 - Prob. 32PSCh. 11.7 - Prob. 33PSCh. 11.7 - Prob. 34PSCh. 11.7 - Prob. 35PSCh. 11.7 - Prob. 36PSCh. 11.7 - Prob. 37PSCh. 11.7 - Prob. 38PSCh. 11.7 - Prob. 39PSCh. 11.7 - Prob. 40PSCh. 11.7 - Prob. 41PSCh. 11.7 - Prob. 42PSCh. 11.7 - Prob. 43PSCh. 11.7 - Prob. 44PSCh. 11.7 - Prob. 45PSCh. 11.7 - Prob. 46PSCh. 11.7 - Prob. 47PSCh. 11.7 - Prob. 48PSCh. 11.7 - Prob. 49PSCh. 11.7 - Prob. 50PSCh. 11.7 - Prob. 51PSCh. 11.7 - Prob. 52PSCh. 11.7 - Prob. 53PSCh. 11.7 - Prob. 54PSCh. 11.7 - Prob. 55PSCh. 11.7 - Prob. 56PSCh. 11.7 - Prob. 57PSCh. 11.7 - Prob. 58PSCh. 11.7 - Prob. 59PSCh. 11.7 - Prob. 60PSCh. 11.8 - Prob. 1PSCh. 11.8 - Prob. 2PSCh. 11.8 - Prob. 3PSCh. 11.8 - Prob. 4PSCh. 11.8 - Prob. 5PSCh. 11.8 - Prob. 6PSCh. 11.8 - Prob. 7PSCh. 11.8 - Prob. 8PSCh. 11.8 - Prob. 9PSCh. 11.8 - Prob. 10PSCh. 11.8 - Prob. 11PSCh. 11.8 - Prob. 12PSCh. 11.8 - Prob. 13PSCh. 11.8 - Prob. 14PSCh. 11.8 - Prob. 15PSCh. 11.8 - Prob. 16PSCh. 11.8 - Prob. 17PSCh. 11.8 - Prob. 18PSCh. 11.8 - Prob. 19PSCh. 11.8 - Prob. 20PSCh. 11.8 - Prob. 21PSCh. 11.8 - Prob. 22PSCh. 11.8 - Prob. 23PSCh. 11.8 - Prob. 24PSCh. 11.8 - Prob. 25PSCh. 11.8 - Prob. 26PSCh. 11.8 - Prob. 27PSCh. 11.8 - Prob. 28PSCh. 11.8 - Prob. 29PSCh. 11.8 - Prob. 30PSCh. 11.8 - Prob. 31PSCh. 11.8 - Prob. 32PSCh. 11.8 - Prob. 33PSCh. 11.8 - Prob. 34PSCh. 11.8 - Prob. 35PSCh. 11.8 - Prob. 36PSCh. 11.8 - Prob. 37PSCh. 11.8 - Prob. 38PSCh. 11.8 - Prob. 39PSCh. 11.8 - Prob. 40PSCh. 11.8 - Prob. 41PSCh. 11.8 - Prob. 42PSCh. 11.8 - Prob. 43PSCh. 11.8 - Prob. 44PSCh. 11.8 - Prob. 45PSCh. 11.8 - Prob. 46PSCh. 11.8 - Prob. 47PSCh. 11.8 - Prob. 48PSCh. 11.8 - Prob. 49PSCh. 11.8 - Prob. 50PSCh. 11.8 - Prob. 51PSCh. 11.8 - Prob. 52PSCh. 11.8 - Prob. 53PSCh. 11.8 - Prob. 54PSCh. 11.8 - Prob. 55PSCh. 11.8 - Prob. 56PSCh. 11.8 - Prob. 57PSCh. 11.8 - Prob. 58PSCh. 11.8 - Prob. 59PSCh. 11.8 - Prob. 60PSCh. 11 - Prob. 1PECh. 11 - Prob. 2PECh. 11 - Prob. 3PECh. 11 - Prob. 4PECh. 11 - Prob. 5PECh. 11 - Prob. 6PECh. 11 - Prob. 7PECh. 11 - Prob. 8PECh. 11 - Prob. 9PECh. 11 - Prob. 10PECh. 11 - Prob. 11PECh. 11 - Prob. 12PECh. 11 - Prob. 13PECh. 11 - Prob. 14PECh. 11 - Prob. 15PECh. 11 - Prob. 16PECh. 11 - Prob. 17PECh. 11 - Prob. 18PECh. 11 - Prob. 19PECh. 11 - Prob. 20PECh. 11 - Prob. 21PECh. 11 - Prob. 22PECh. 11 - Prob. 23PECh. 11 - Prob. 24PECh. 11 - Prob. 25PECh. 11 - Prob. 26PECh. 11 - Prob. 27PECh. 11 - Prob. 28PECh. 11 - Prob. 29PECh. 11 - Prob. 30PECh. 11 - Prob. 1SPCh. 11 - Prob. 2SPCh. 11 - Prob. 3SPCh. 11 - Prob. 4SPCh. 11 - Prob. 5SPCh. 11 - Prob. 6SPCh. 11 - Prob. 7SPCh. 11 - Prob. 8SPCh. 11 - Prob. 9SPCh. 11 - Prob. 10SPCh. 11 - Prob. 11SPCh. 11 - Prob. 12SPCh. 11 - Prob. 13SPCh. 11 - Prob. 14SPCh. 11 - Prob. 15SPCh. 11 - Prob. 16SPCh. 11 - Prob. 17SPCh. 11 - Prob. 18SPCh. 11 - Prob. 19SPCh. 11 - Prob. 20SPCh. 11 - Prob. 21SPCh. 11 - Prob. 22SPCh. 11 - Prob. 23SPCh. 11 - Prob. 24SPCh. 11 - Prob. 25SPCh. 11 - Prob. 26SPCh. 11 - Prob. 27SPCh. 11 - Prob. 28SPCh. 11 - Prob. 29SPCh. 11 - Prob. 30SPCh. 11 - Prob. 31SPCh. 11 - Prob. 32SPCh. 11 - Prob. 33SPCh. 11 - Prob. 34SPCh. 11 - Prob. 35SPCh. 11 - Prob. 36SPCh. 11 - Prob. 37SPCh. 11 - Prob. 38SPCh. 11 - Prob. 39SPCh. 11 - Prob. 40SPCh. 11 - Prob. 41SPCh. 11 - Prob. 42SPCh. 11 - Prob. 43SPCh. 11 - Prob. 44SPCh. 11 - Prob. 45SPCh. 11 - Prob. 46SPCh. 11 - Prob. 47SPCh. 11 - Prob. 48SPCh. 11 - Prob. 49SPCh. 11 - Prob. 50SPCh. 11 - Prob. 51SPCh. 11 - Prob. 52SPCh. 11 - Prob. 53SPCh. 11 - Prob. 54SPCh. 11 - Prob. 55SPCh. 11 - Prob. 56SPCh. 11 - Prob. 57SPCh. 11 - Prob. 58SPCh. 11 - Prob. 59SPCh. 11 - Prob. 60SPCh. 11 - Prob. 61SPCh. 11 - Prob. 62SPCh. 11 - Prob. 63SPCh. 11 - Prob. 64SPCh. 11 - Prob. 65SPCh. 11 - Prob. 66SPCh. 11 - Prob. 67SPCh. 11 - Prob. 68SPCh. 11 - Prob. 69SPCh. 11 - Prob. 70SPCh. 11 - Prob. 71SPCh. 11 - Prob. 72SPCh. 11 - Prob. 73SPCh. 11 - Prob. 74SPCh. 11 - Prob. 75SPCh. 11 - Prob. 76SPCh. 11 - Prob. 77SPCh. 11 - Prob. 78SPCh. 11 - Prob. 79SPCh. 11 - Prob. 80SPCh. 11 - Prob. 81SPCh. 11 - Prob. 82SPCh. 11 - Prob. 83SPCh. 11 - Prob. 84SPCh. 11 - Prob. 85SPCh. 11 - Prob. 86SPCh. 11 - Prob. 87SPCh. 11 - Prob. 88SPCh. 11 - Prob. 89SPCh. 11 - Prob. 90SPCh. 11 - Prob. 91SPCh. 11 - Prob. 92SPCh. 11 - Prob. 93SPCh. 11 - Prob. 94SPCh. 11 - Prob. 95SPCh. 11 - Prob. 96SPCh. 11 - Prob. 97SPCh. 11 - Prob. 98SPCh. 11 - Prob. 99SP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Find the partial derivatives of the function w = V 4r2 + 1s2 + 2t2 dw ds 吕0 DOO O00 F4 F3 F5 F6 F7 F8 F9 $ & * 4 5 6 7 8 Y U శ్రీశ్ శ్రీశి శ్రీతిarrow_forwardSuppose that the real variables p, v, t, and u satisfy the equations f(p, v, t, u) = 0, g(p, v,t, u) = 0, and that these two equations can be solved for any two of the four variables as functions of the other two. Then the symbol du/dp, for example, is ambiguous. We denote by (du/dp)t the partial derivative of u with respect to p, with u and v considered as functions of p and t, and by (8u/@p), the partial derivative of u with respect to p, with u and t considered as functions of p and v. With this notation, show that ).- G).C).- G),C). - O). ди dt dt dt dp dp All functions that appear in this problem may be assumed to be defined and differen- tiable in a suitable set to make the arguments work.arrow_forwardIf the partial derivatives of A, B. U, and Vare assumed to exist, then I. V(U + V) = VU + VV or grad (U+ )3grad u+ grad V 2. V (A +B) = V-A+V B or div (A + B) +div A + div B 3. Vx (A +B) = VxA+VxB or curl (A + B) = curlA+ curl B 4. V.(UA) = (VU) - A+ U(V A) 5. Vx (UA) = (VU) xA + U(V x A) 6. V.(A x B) = B (Vx A)-A (Vx B) 7. Vx (A x B) = (B V)A- B(V A)-(A V)B+ A(V B) 8. V(A B) (B V)A+ (A V)B+ Bx (Vx A) + A x (V x B) 9. V.(VU) = VU= is called the Laplacian of U. +. and V =. ar dyaz is called the Lapacian operator. 10. Vx (VU) =0. The curl of the gradient of U is zero, 11. V.(Vx A) = 0. The divergence of the curl of A is zero. 12. Vx (Vx A)= V(V. A)-V Aarrow_forward
- I am struggling with this questionarrow_forwardFind ∂x/∂u and ∂y/∂u if the equations u = x2 - y2 and y = x2 - y define x and y as functions of the independent variables u and y, and the partial derivatives exist. Then let s = x2 + y2 and find ∂s/∂u.arrow_forward1. Show that y₁= ez and y2 = ze form a linearly independent set on the interval (-00,00).arrow_forward
- Below is a function . We are interested in how changes in the values of the input variables x,y or parameters a,b,c affect f. To that aim, we write as a function of both its input variables and its parameters, using the notation f(x, y; a, b, c). The “gradient of towards ”, denoted as ∇v f, is the vector of all partial derivatives of to the variables/parameters listed in v. Fill in the boxes.f(x, y; a, b, c) = a exp(2x) + by2 + cxy∇x,y f(x, y; a, b, c) = ?∇a,b,c f(x, y; a, b, c) =• If are very small real numbers, what is f(1,2; 3,4 + δ,5 + ε) − f(1,2; 3,4,5) approximately? Explain how you obtained the answer.arrow_forwardBelow is a function . We are interested in how changes in the values of the input variables x,y or parameters a,b,c affect f. To that aim, we write as a function of both its input variables and its parameters, using the notation f(x, y; a, b, c). The “gradient of towards ”, denoted as ∇v f, is the vector of all partial derivatives of to the variables/parameters listed in v. Fill in the boxes.f(x, y; a, b, c) = a exp(2x) + by2 + cxy∇x,y f(x, y; a, b, c) = ?∇a,b,c f(x, y; a, b, c) =• If are very small real numbers, what is f(1,2; 3,4 + δ,5 + ε) − f(1,2; 3,4,5) approximately? Explain how you obtained the answer.arrow_forwardWhat does it mean for the differentiability of a function if the Cauchy-Reimann equations (Ux = Vy and Vx = -Uy) do not hold?arrow_forward
- Let , be the line passing through A=(3, 1, 2) and B = (-1,0, 1) and let , be the line passing though C= (1, 1, 1) and D= (-1, 2, 0). Use partial derivatives to the points on , and that are nearest to each other. Using these points, what is the distance between the lines, and £₂.arrow_forwardFor the function f (x,y, z, w) with x, y, z, and w all functions of s, t, and r, write out the chain rule formula for the first partial derivative of f in terms of t.arrow_forwardLet f be a function of two variables that has continuous partial derivatives and consider the points A(5, 2), B(13, 2), C(5, 13), and D(14, 14). The directional derivative of f at A in the direction of the vector AB is 4 and the directional derivative at A in the direction of AC is 9. Find the directional derivative of f at A in the direction of the vector AD.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY