DISCRETE MATHEMATICS LOOSELEAF
8th Edition
ISBN: 9781264309689
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.4, Problem 9E
To determine
Draw all the spanning trees of the given simple graphs.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the number of spanning trees of a labels c3 ?
I
8
10
Consider the graph given above. Use Prim's algorithm to find the minimum spanning tree, starting at the top vertex.
What is the total weight of the spanning tree?
Show that if a simple graph G has n vertices and at least n edges, then G must contain a
сycle.
Chapter 11 Solutions
DISCRETE MATHEMATICS LOOSELEAF
Ch. 11.1 - Prob. 1ECh. 11.1 - Vhich of these graphs are trees?Ch. 11.1 - Prob. 3ECh. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Prob. 8ECh. 11.1 - Prob. 9ECh. 11.1 - Prob. 10E
Ch. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - Let G he a simple graph with n vertices. Show that...Ch. 11.1 - Prob. 16ECh. 11.1 - Prob. 17ECh. 11.1 - Prob. 18ECh. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - A chain letter starts when a person sends a letter...Ch. 11.1 - A chain letter starts with a person sending a...Ch. 11.1 - Prob. 24ECh. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Prob. 28ECh. 11.1 - Prob. 29ECh. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Letnbe a power of 2. Show thatnnumbers can be...Ch. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Draw the first seven rooted Fibonacci trees.Ch. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Show that the average depth of a leaf in a binary...Ch. 11.2 - Build a binary search tree for the...Ch. 11.2 - Build a binary search tree for the words oenology,...Ch. 11.2 - How many comparisons are needed to locate or to...Ch. 11.2 - How many comparisons are needed to locate or to...Ch. 11.2 - Using alphabetical order, construct a binary...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - One of four coins may be counterfeit. If it is...Ch. 11.2 - Find the least number of comparisons needed to...Ch. 11.2 - Prob. 12ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 15ECh. 11.2 - Prob. 16ECh. 11.2 - Prob. 17ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 21ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 23ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 25ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Suppose thatmis a positive integer with m>2An...Ch. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Suppose that m is a positive integer withm= 2. An...Ch. 11.2 - Suppose thatmis a positive integer withm= 2....Ch. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 36ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 39ECh. 11.2 - Suppose that m is a positive integer withm= 2. An...Ch. 11.2 - Prob. 41ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 43ECh. 11.2 - Prob. 44ECh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Suppose that the vertex with the largest address...Ch. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - Prob. 13ECh. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Prob. 16ECh. 11.3 - Prob. 17ECh. 11.3 - a) Represent the compound propositionsandusing...Ch. 11.3 - a) Represent(AB)(A(BA))using an ordered rooted...Ch. 11.3 - In how many ways can the stringbe fully...Ch. 11.3 - In how many ways can the stringbe fully...Ch. 11.3 - Draw the ordered rooted tree corresponding to each...Ch. 11.3 - What is the value of each of these prefix...Ch. 11.3 - What is the value of each of these postfix...Ch. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Show that any well-formed formula in prefix...Ch. 11.3 - Prob. 32ECh. 11.3 - Prob. 33ECh. 11.3 - Prob. 34ECh. 11.4 - How many edges must be removed from a connected...Ch. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Describe the tree produced by breadth-first search...Ch. 11.4 - Prob. 23ECh. 11.4 - Explain how breadth-first search or depth-first...Ch. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Prob. 27ECh. 11.4 - Use backtracking to find a subset, if it exists,...Ch. 11.4 - Explain how backtracking can be used to find a...Ch. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - A spanning forest of a graphGis a forest that...Ch. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - A spanning forest of a graphGis a forest that...Ch. 11.4 - Prob. 37ECh. 11.4 - Prob. 38ECh. 11.4 - Prob. 39ECh. 11.4 - Prob. 40ECh. 11.4 - Prob. 41ECh. 11.4 - Prob. 42ECh. 11.4 - Prob. 43ECh. 11.4 - Prob. 44ECh. 11.4 - Prob. 45ECh. 11.4 - Prob. 46ECh. 11.4 - Prob. 47ECh. 11.4 - Prob. 48ECh. 11.4 - Prob. 49ECh. 11.4 - Prob. 50ECh. 11.4 - Prob. 51ECh. 11.4 - Prob. 52ECh. 11.4 - Prob. 53ECh. 11.4 - Prob. 54ECh. 11.4 - Prob. 55ECh. 11.4 - Prob. 56ECh. 11.4 - Prob. 57ECh. 11.4 - Prob. 58ECh. 11.4 - Prob. 59ECh. 11.4 - Prob. 60ECh. 11.4 - Prob. 61ECh. 11.5 - The roads represented by this graph are all...Ch. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - Prob. 10ECh. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - Prob. 15ECh. 11.5 - Prob. 16ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - Prob. 20ECh. 11.5 - Prob. 21ECh. 11.5 - Prob. 22ECh. 11.5 - Express the algorithm devised in Exercise 22 in...Ch. 11.5 - Prob. 24ECh. 11.5 - Prob. 25ECh. 11.5 - Prob. 26ECh. 11.5 - Prob. 27ECh. 11.5 - Prob. 28ECh. 11.5 - Prob. 29ECh. 11.5 - Prob. 30ECh. 11.5 - Prob. 31ECh. 11.5 - Prob. 32ECh. 11.5 - Prob. 33ECh. 11.5 - Prob. 34ECh. 11.5 - Prob. 35ECh. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - Prob. 5RQCh. 11 - Prob. 6RQCh. 11 - Prob. 7RQCh. 11 - a) What is a binary search tree? b) Describe an...Ch. 11 - Prob. 9RQCh. 11 - Prob. 10RQCh. 11 - a) Explain how to use preorder, inorder, and...Ch. 11 - Show that the number of comparisons used by a...Ch. 11 - a) Describe the Huffman coding algorithm for...Ch. 11 - Draw the game tree for nim if the starting...Ch. 11 - Prob. 15RQCh. 11 - Prob. 16RQCh. 11 - a) Explain how backtracking can be used to...Ch. 11 - Prob. 18RQCh. 11 - Prob. 19RQCh. 11 - Show that a simple graph is a tree if and Only if...Ch. 11 - Prob. 2SECh. 11 - Prob. 3SECh. 11 - Prob. 4SECh. 11 - Prob. 5SECh. 11 - Prob. 6SECh. 11 - Prob. 7SECh. 11 - Prob. 8SECh. 11 - Prob. 9SECh. 11 - Prob. 10SECh. 11 - Prob. 11SECh. 11 - Prob. 12SECh. 11 - Prob. 13SECh. 11 - Prob. 14SECh. 11 - Prob. 15SECh. 11 - Prob. 16SECh. 11 - Prob. 17SECh. 11 - Prob. 18SECh. 11 - Prob. 19SECh. 11 - Prob. 20SECh. 11 - Prob. 21SECh. 11 - Prob. 22SECh. 11 - Prob. 23SECh. 11 - The listing of the vertices of an ordered rooted...Ch. 11 - The listing of the vertices of an ordered rooted...Ch. 11 - Prob. 26SECh. 11 - Prob. 27SECh. 11 - Prob. 28SECh. 11 - Prob. 29SECh. 11 - Show that if every circuit not passing through any...Ch. 11 - Prob. 31SECh. 11 - Prob. 32SECh. 11 - Prob. 33SECh. 11 - Prob. 34SECh. 11 - Prob. 35SECh. 11 - Prob. 36SECh. 11 - Prob. 37SECh. 11 - Prob. 38SECh. 11 - Prob. 39SECh. 11 - Prob. 40SECh. 11 - Prob. 41SECh. 11 - Prob. 42SECh. 11 - Prob. 43SECh. 11 - Prob. 44SECh. 11 - Prob. 45SECh. 11 - Show that a directed graphG= (V,E) has an...Ch. 11 - In this exercise we will develop an algorithm to...Ch. 11 - Prob. 1CPCh. 11 - Prob. 2CPCh. 11 - Prob. 3CPCh. 11 - Prob. 4CPCh. 11 - Prob. 5CPCh. 11 - Prob. 6CPCh. 11 - Prob. 7CPCh. 11 - Given an arithmetic expression in prefix form,...Ch. 11 - Prob. 9CPCh. 11 - Given the frequency of symbols, use Huffman coding...Ch. 11 - Given an initial position in the game of nim,...Ch. 11 - Prob. 12CPCh. 11 - Prob. 13CPCh. 11 - Prob. 14CPCh. 11 - Prob. 15CPCh. 11 - Prob. 16CPCh. 11 - Prob. 17CPCh. 11 - Prob. 18CPCh. 11 - Prob. 1CAECh. 11 - Prob. 2CAECh. 11 - Prob. 3CAECh. 11 - Prob. 4CAECh. 11 - Prob. 5CAECh. 11 - Prob. 6CAECh. 11 - Prob. 7CAECh. 11 - Prob. 8CAECh. 11 - Prob. 1WPCh. 11 - Prob. 2WPCh. 11 - Prob. 3WPCh. 11 - DefineAVL-trees(sometimes also known...Ch. 11 - Prob. 5WPCh. 11 - Prob. 6WPCh. 11 - Prob. 7WPCh. 11 - Prob. 8WPCh. 11 - Prob. 9WPCh. 11 - Prob. 10WPCh. 11 - Discuss the algorithms used in IP multicasting to...Ch. 11 - Prob. 12WPCh. 11 - Describe an algorithm based on depth-first search...Ch. 11 - Prob. 14WPCh. 11 - Prob. 15WPCh. 11 - Prob. 16WPCh. 11 - Prob. 17WPCh. 11 - Prob. 18WP
Knowledge Booster
Similar questions
- Find the sum of the degrees of the vertices of each graph in Exercises 1–3 and verify that it equals twice the num- ber of edges in the graph. d.arrow_forwardWhich among the following is an example of a spanning-tree? a b dc e a b+e + dC aCdebarrow_forwardGive an example of a graph which has precisely seven (possibly isomorphic) minimum spanning trees.arrow_forward
- Prove the following theorem: A simple graph is connected if and only if it has a spanning tree.arrow_forwardExercise 11.3.1: Finding a graph with a given set of properties. Find a graph with the given set of properties or explain why no such graph can exist. (a) Tree, seven vertices, total degree = 14. (b) Connected, six vertices, six edges.arrow_forward4. Does the graph whose adjacency matrix given by Find one if it does. 1 10 1 1 0 1 1 1 10 1 10 110 10 11 1 1 have a spanning tree?arrow_forward
- Q) Find the different spanning trees of the following connected graph C d g 6arrow_forwardle bus zzes dules BlueButton aborations iopto Vidco What is the minimum number of edges for a spanning tree for this graph?arrow_forwardDraw all nonisomorphic simple graphs with four vertices and no more than two edges.arrow_forward
- Question8. Find a spanning tree of minimum weight for the graph weighted G.arrow_forward1. Use Kruskal's algorithm to find a minimum spanning tree for the given weighted graph. 12 14 13 19 15 17arrow_forwardUse either Prim's algorithm (start with vertex A) or Kruskaľ's algorithm to find a minimal spanning tree for the relation given by the weighted, undirected graph. State which algorithm you applied. Sketch the graph for your spanning tree F F C C A A E B 5 B D 5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education