Limits Evaluate the following limits using Taylor series.
9.
Trending nowThis is a popular solution!
Chapter 11 Solutions
Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Thomas' Calculus: Early Transcendentals (14th Edition)
Glencoe Math Accelerated, Student Edition
Precalculus (10th Edition)
University Calculus: Early Transcendentals (3rd Edition)
- Use series to evaluate the limitsarrow_forwardQ(A). Let {fn(x)}-1=3: be a sequence of functions + (x – 2)* S. n=1 defined over [2,3]. Show that: (a) fn(x) is meaurable and monotonic increasing for all n.arrow_forwardse the ratio test to determine whether " +6 converges or diverges. 6" n=14 (a) Find the ratio of successive terms. Write your answer as a fully simplified fraction. For n 2 14, an+1 = lim lim an n00 n00 (b) Evaluate the limit in the previous part. Enter co as infinity and -0o as -infinity. If the limit does not exist, enter DNE. an+1 lim n00 an (c) By the ratio test, does the series converge, diverge, or is the test inconclusive? Choosearrow_forward
- S1, S2, ..., but not on USk- k=D1 Exercise 5. Consider the sequence (fn)n defined by fn(x) = 1. Find f(x) = limn fn(T). for r > 0. 1+naarrow_forwardI will rate and like. Thank you for your work!arrow_forwardSeries ∞ n is a divergent series. Which of the following test(s) can be used to show its divergence. n=1 n²+1 (A). The Divergence Test (B). The Integral Test (C). The Limit Comparison Test (D). The Ratio Testarrow_forward
- The integral tests says that if an=f(n), then the series 2 an is convergent if and only n =1 if the integral J F(x)dx is convergent as long as the function f is BLANK-1, BLANK- 2, and BLANK-3 on the interval X21. BLANK-1 Add your answer BLANK-2 Add your answer BLANK-3 Add your answer .T dx= lim x-2dx= lim -Tl+1¬1= lim +1 = 1 Since the integral converges and therefore the series 2 K=1 K? also converges, and <1+1=2. K=1 K2arrow_forwardWithout uding L hospitals rules or series expansion evaluate the following limitarrow_forwardel/n + e2/n +...+ e(n–1)/n + en/n (b) Evaluate the limit lim n-00 Hint: Use the idea of Riemann sums and definite integral.arrow_forward
- M3arrow_forward(n²) diverges. Recall from the Laws of Exponents that 2 (n) Show that > n! (2")". n= 1 2 (n?) :? n! Which limit below is the correct limit for the Ratio Test, where an %3D 2 (n?) 2 (n2) •n! n! O A. lim В. lim 2(n + 1)2 (n+ 12) • (n + 1)! (n)! (n + 1)2 2 (n?) lim (n + 1)! C. lim D. 2 (n?) (n+ 12) n-0 2 n!arrow_forward[5] Use series to evaluate the limits of the following: (a) lim sin(h) (c) lim r sin () h0 (b) lim 1-cos(x)–arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage