Limits with a parameter Use Taylor series to evaluate the following limits. Express the result in terms of the parameter(s).
66.
Trending nowThis is a popular solution!
Chapter 11 Solutions
Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics (13th Edition)
Basic Business Statistics, Student Value Edition
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- If a series of positive terms converges, does it follow that the remainder R,, must decrease to zero as n-co? Explain. Choose the correct answer below. OA. R, must decrease to zero because lim R, lim f(x)dx for all positive functions x. n-00 71-400 00 lima, n+00 K=1 OC. R, does not decrease to zero because R, is positive for a series with positive terms. OD. R, does not decrease to zero because convergent series do not have remainders. OB. R, must decrease to zero because lim R, n-+00 -0.arrow_forwardThanks for any help on this (13)arrow_forwardV3.arrow_forward
- Find Taylor series for a function f(x), near the given point X0. Write the general term.arrow_forwardI for the function: f(x) = cos(7x). = COS a. Use sigma notation to write the Taylor series T(x) about xo = 14 (-1)"+172n+1 Σ fact (2n+1) 2n+1 A T(x) X - 18 n=0 b. Find interval of convergence of the series you found in Part a. Interval of convergence: (-infinity, infinity)arrow_forwardNeed some help with this. Do not simplify. thank you!arrow_forward
- Evaluate by series approximationarrow_forwardThe integral tests says that if an=f(n), then the series 2 an is convergent if and only n =1 if the integral J F(x)dx is convergent as long as the function f is BLANK-1, BLANK- 2, and BLANK-3 on the interval X21. BLANK-1 Add your answer BLANK-2 Add your answer BLANK-3 Add your answer .T dx= lim x-2dx= lim -Tl+1¬1= lim +1 = 1 Since the integral converges and therefore the series 2 K=1 K? also converges, and <1+1=2. K=1 K2arrow_forwardSeries ∞ n is a divergent series. Which of the following test(s) can be used to show its divergence. n=1 n²+1 (A). The Divergence Test (B). The Integral Test (C). The Limit Comparison Test (D). The Ratio Testarrow_forward
- (Review) Determine whether the series E(-1)n+1 n3+5 Converges absolutely, converges conditionally, or diverges. n=1 a. converges absolutely b. converges conditionally c. diverges d. cannot be determined Let f(x) = 1 Which of the following are true? (2 marks) 1+2x² a) f(x) = E(-1)" 2"x²n if – 1< x < 1. n=0 b) f(x) = E(-1)" 2"x²n if – < x < %: n=0 c) T3,0(x) = 1 – 2x2 . d) f"(0) = -2³ · 3!. e) ſi H da 1+2x² E (-1)" 2"[2²n – 1). n=0arrow_forward2aa correct answerarrow_forwardS1a please help me with the brief solution and answer, thank youarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning