Thousands of jokes have been told about marriage and divorce. Exercises 61-68 are based on the following observations:
• "By all means, marry; if you get a good wife, you'll be happy. If you get a bad one, you’ll become a philosopher. "—Socrates
• "My wife and I were happy for 20 years. Then we met." — Rodney Dangerfield
• "Whatever you may look like, marry a man your own age. As your beauty fades, so will his eyesight."—Phyllis Diller
• "Why do Jewish divorces cost so much? Because they're worth it.'— Henny Youngman
• "I think men who have a pierced ear are better prepared for marriage. They've experienced pain and bought jewelry." — Rita Rudner
• 'For a while we pondered whether to take a vacation or get a divorce. We decided that a trip to Bermuda is over in two weeks, but a divorce is something you always have."— Woody Allen
In how many ways can people select their two favorite jokes from these thoughts about marriage and divorce?
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Thinking Mathematically (6th Edition)
- 19. Block Matrices • Prove that the determinant of a block matrix: A B 0 D . is det(A) · det (D), where A and D are square matrices. • Show how block matrices are used in solving large-scale linear systems.arrow_forward6. Norms and Metrics • Show that the function || || norm on Rn. = √xT Ax, where A is a positive definite matrix, defines a . Prove that the matrix norm induced by the vector L²-norm satisfies ||A||2 ✓ max (ATA), where Amax is the largest eigenvalue.arrow_forward2. Linear Transformations • • Let T: R3 R³ be a linear transformation such that T(x, y, z) = (x + y, y + z, z + → x). Find the matrix representation of T with respect to the standard basis. Prove that a linear transformation T : VV is invertible if and only if it is bijective.arrow_forward
- 11. Positive Definiteness Prove that a matrix A is positive definite if and only if all its eigenvalues are positive.arrow_forward21. Change of Basis Prove that the matrix representation of a linear transformation T : V → V depends on the choice of basis in V. If P is a change of basis matrix, show that the transformation matrix in the new basis is P-¹AP.arrow_forward14. Projection Matrices Show that if P is a projection matrix, then P² = P. Find the projection matrix onto the subspace spanned by the vector (1,2,2)T.arrow_forward
- 4. Diagonalization Prove that a square matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. • Determine whether the following matrix is diagonalizable: [54 2 B = 01 -1 3arrow_forward8. Determinants • • Prove that the determinant of a triangular matrix is the product of its diagonal entries. Show that det(AB) = det(A)det(B) for any two square matrices A and B.arrow_forward15. Tensor Products • • Define the tensor product of two vector spaces. Compute the tensor product of (1,0) and (0, 1) in R². Discuss the role of tensors in multilinear algebra and provide an example of a second-order tensor.arrow_forward
- 20. Numerical Methods • Describe the QR decomposition method and explain its use in solving linear systems. • Solve the following system numerically using Jacobi iteration: 10x+y+z = 12, 2x+10y+z = 13, 2x+2y+10z = 14.arrow_forward1. Vector Spaces • Prove that the set of all polynomials of degree at most n forms a vector space over R. Determine its dimension. • = Let VR³ and define a subset W = {(x, y, z) Є R³ | x + y + z = 0}. Prove that W is a subspace of V and find its basis.arrow_forward24. Spectral Decomposition Explain the spectral decomposition of a symmetric matrix and its applications. • Compute the spectral decomposition of: A = 5 4arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell