Probability and Statistics for Engineering and the Sciences
Probability and Statistics for Engineering and the Sciences
9th Edition
ISBN: 9781305251809
Author: Jay L. Devore
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 11.3, Problem 27E

The output of a continuous extruding machine that coats steel pipe with plastic was studied as a function of the thermostat temperature profile (A, at three levels), the type of plastic (B, at three levels), and the speed of the rotating screw that forces the plastic through a tube-forming die (C, at three levels). There were two replications (L = 2) at each combination of levels of the factors, yielding a total of 54 observations on output. The sums of squares were SSA = 14,144.44, SSB = 5511.27, SSC = 244,696.39, SSAB = 1069.62, SSAC = 62.67, SSBC = 331.67, SSE = 3127.50, and SST = 270,024.33.

  1. a. Construct the ANOVA table.
  2. b. Use appropriate F tests to show that none of the F ratios for two- or three-factor interactions is significant at level .05.
  3. c. Which main effects appear significant?
  4. d. With x..1. = 5 8242, x..2. = 5 9732, and x..3. = 11,210, use Tukey’s procedure to identify significant differences among the levels of factor C.
Blurred answer
Students have asked these similar questions
In this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)
Problem 4. Margrabe formula and the Greeks (20 pts) In the homework, we determined the Margrabe formula for the price of an option allowing you to swap an x-stock for a y-stock at time T. For stocks with initial values xo, yo, common volatility σ and correlation p, the formula was given by Fo=yo (d+)-x0Þ(d_), where In (±² Ꭲ d+ õ√T and σ = σ√√√2(1 - p). дго (a) We want to determine a "Greek" for ỡ on the option: find a formula for θα (b) Is дго θα positive or negative? (c) We consider a situation in which the correlation p between the two stocks increases: what can you say about the price Fo? (d) Assume that yo< xo and p = 1. What is the price of the option?
We consider a 4-dimensional stock price model given (under P) by dẴ₁ = µ· Xt dt + йt · ΣdŴt where (W) is an n-dimensional Brownian motion, π = (0.02, 0.01, -0.02, 0.05), 0.2 0 0 0 0.3 0.4 0 0 Σ= -0.1 -4a За 0 0.2 0.4 -0.1 0.2) and a E R. We assume that ☑0 = (1, 1, 1, 1) and that the interest rate on the market is r = 0.02. (a) Give a condition on a that would make stock #3 be the one with largest volatility. (b) Find the diversification coefficient for this portfolio as a function of a. (c) Determine the maximum diversification coefficient d that you could reach by varying the value of a? 2

Chapter 11 Solutions

Probability and Statistics for Engineering and the Sciences

Ch. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - The power curves of Figures 10.5 and 10.6 can be...Ch. 11.2 - In an experiment to assess the effects of curing...Ch. 11.2 - Prob. 17ECh. 11.2 - The accompanying data resulted from an experiment...Ch. 11.2 - A two-way ANOVA was carried out to assess the...Ch. 11.2 - The article Fatigue Limits of Enamel Bonds with...Ch. 11.2 - In an experiment to investigate the effect of...Ch. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.3 - The output of a continuous extruding machine that...Ch. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Nickel titanium (NiTi) shape memory alloy (SMA)...Ch. 11.3 - Prob. 32ECh. 11.3 - Prob. 33ECh. 11.3 - The article The Responsiveness of Food Sales to...Ch. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Prob. 37ECh. 11.4 - The accompanying data resulted from an experiment...Ch. 11.4 - The accompanying data resulted from a 23...Ch. 11.4 - In a study of processes used to remove impurities...Ch. 11.4 - Prob. 41ECh. 11.4 - Prob. 42ECh. 11.4 - Prob. 43ECh. 11.4 - a. In a 24 experiment, suppose two blocks are to...Ch. 11.4 - a. An experiment was carried out to investigate...Ch. 11.4 - Prob. 46ECh. 11.4 - a. In a seven-factor experiment (A,, G), suppose a...Ch. 11.4 - The article Applying Design of Experiments to...Ch. 11 - The results of a study on the effectiveness of...Ch. 11 - Prob. 51SECh. 11 - Prob. 52SECh. 11 - In an automated chemical coating process, the...Ch. 11 - Coal-fired power plants used in the electrical...Ch. 11 - Impurities in the form of iron oxides lower the...Ch. 11 - Factorial designs have been used in forestry to...Ch. 11 - Prob. 57SECh. 11 - Prob. 58SECh. 11 - The bond strength when mounting an integrated...Ch. 11 - Prob. 60SECh. 11 - Prob. 61SE
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Introduction to experimental design and analysis of variance (ANOVA); Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=vSFo1MwLoxU;License: Standard YouTube License, CC-BY