VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
12th Edition
ISBN: 9781260265453
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.3, Problem 11.74P
Car A is traveling on a highway at a constant speed (vA)0 = 60 mi/h and is 380 ft from the entrance of an access ramp when car B enters the acceleration lane at that point at a speed (vB)0 = 15 mi/h. Car B accelerates uniformly and enters the main traffic lane after traveling 200 ft in 5 s. It then continues to accelerate at the same rate until it reaches a speed of 60 mi/h, which it then maintains. Determine the final distance between the two cars.
Fig. P11.74
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
A motorist starts from rest at Point A on a circular entrance ramp when t = 0, increases the speed of her automobile at a constant rate and enters the highway at Point B. Her speed continues to increase at the same rate until it reaches 85 km/h at Point C.
Determine the speed at Point B. (You must provide an answer before moving on to the next part.)
The speed at Point B is km/h.
Note: please show step by step solution. Hence, double check the solution. For correction purposes!. I require handwritten working out please!. Kindly, please meticulously, check the image for conceptual understanding and for extra information purposes!. Also on occasions, I receive wrong answers!!. Please go through the question and working out step by step when you finish them. Appreciate your time!.
Two cars, A and B, started at the same time and location. Car A started from rest and moved
with an acceleration a = 216.18 m/s . Car B also started from rest and moved with velocity v =
151.0914 m/s for 20 seconds after which it maintained its acceleration. It would take 30 seconds
for Car A to reach their destination. Find if Car B caught up to Car A before it reached its
destination. Assume rectilinear motion for both cars.
When the effect of aerodynamic drag is included, the y-acceleration of a baseball moving vertically upward is au = -g - kv², while the
acceleration when the ball is moving downward is ad = -g + kv², where k is a positive constant and v is the speed in feet per second. If
the ball is thrown upward at 94 ft/sec from essentially ground level, compute its maximum height h and its speed vf (a positive number)
upon impact with the ground. Take k to be 0.0017 ft¹ and assume that g is constant.
au=-g-ku²
y
1
194 ft/sec
Answers:
h =
Vf=
i
i
ad=-g+kv2
h
ft
ft/sec
Chapter 11 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - The vertical motion of mass A is defined by the...Ch. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - A group of hikers uses a GPS while doing a 40-mile...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - A girl operates a radio-controlled model car in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Many car companies are performing research on...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece of electronic equipment that is surrounded...Ch. 11.1 - A projectile enters a resisting medium at x = 0...Ch. 11.1 - Point A oscillates with an acceleration a =...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - Prob. 11.21PCh. 11.1 - Starting from x = 0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Prob. 11.27PCh. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v = v0[1 sin(t/T)]....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A minivan is tested for acceleration and braking....Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Prob. 11.45PCh. 11.2 - Prob. 11.46PCh. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - In the position shown, collar B moves to the left...Ch. 11.2 - Collar A starts from rest and moves to the right...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t = 0 and moves...Ch. 11.2 - Collars A and B start from rest, and collar A...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Prob. 11.58PCh. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - Prob. 11.60PCh. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - Prob. 11.62PCh. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.66PCh. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - The acceleration record shown was obtained for a...Ch. 11.3 - Prob. 11.71PCh. 11.3 - Prob. 11.72PCh. 11.3 - Prob. 11.73PCh. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - Prob. 11.75PCh. 11.3 - Prob. 11.76PCh. 11.3 - Prob. 11.77PCh. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - Prob. 11.83PCh. 11.3 - Prob. 11.84PCh. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Two road rally checkpoints A and B are located on...Ch. 11.3 - As shown in the figure, from t = 0 to t = 4 s, the...Ch. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Prob. 11.7CQCh. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine throws baseballs with...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - A pump is located near the edge of the horizontal...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h =...Ch. 11.4 - Prob. 11.109PCh. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - A worker uses high-pressure water to clean the...Ch. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Prob. 11.120PCh. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Prob. 11.123PCh. 11.4 - Prob. 11.124PCh. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - Prob. 11.126PCh. 11.4 - Coal discharged from a dump truck with an initial...Ch. 11.4 - Conveyor belt A, which forms a 20 angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Prob. 11.130PCh. 11.4 - Prob. 11.131PCh. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - Prob. 11.9CQCh. 11.5 - A child walks across merry-go-round A with a...Ch. 11.5 - Prob. 11.133PCh. 11.5 - Determine the maximum speed that the cars of the...Ch. 11.5 - Human centrifuges are often used to simulate...Ch. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Pin A, which is attached to link AB, is...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - A nozzle discharges a stream of water in the...Ch. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - A projectile is fired from point A with an initial...Ch. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - 11.153 and 11.154 A satellite will travel...Ch. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Knowing that the radius of the earth is 6370 km,...Ch. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - The angular displacement of the robotic arm is...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Some parasailing systems use a winch to pull the...Ch. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - Prob. 11.167PCh. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - An airplane passes over a radar tracking station...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - 11.173 and 11.174 A particle moves along the...Ch. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - The motion of a particle on the surface of a right...Ch. 11.5 - Prob. 11.178PCh. 11.5 - The three-dimensional motion of a particle is...Ch. 11.5 - For the conic helix of Prob. 11.95, determine the...Ch. 11 - Students are testing their new drone to see if it...Ch. 11 - A drag racing car starts from rest and moves down...Ch. 11 - A driver is traveling at a speed of 72 km/h in car...Ch. 11 - The velocities of commuter trains A and B are as...Ch. 11 - Knowing that slider block A starts from rest and...Ch. 11 - A roller-coaster car is traveling at a speed of 20...Ch. 11 - A golfer hits a ball with an initial velocity of...Ch. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Sand is discharged at A from a conveyor belt and...Ch. 11 - The end point B of a boom is originally 5 m from...Ch. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- can you help me with letter c? with acceleration being 10.07 m/s2arrow_forwardA subway car leaves station A; it gains speed at the rate of 4 ft/s² for 6 s and then at the rate of 6 ft/s² until it has reached the speed of 48 ft/s. The car maintains the same speed until it approaches station B; brakes are then applied, giving the car a constant deceleration and bringing it to a stop in 6 s. The total running time from A to B is 40 s. Determine the distance between stations A and B. . Do not type the solution. Show the complete computation/solution with the necessary graphs or diagrams.arrow_forwardCar A is traveling at a constant speed of vA = 130 kph at a location where the speed limit is 100 kph. The police officer in car P observes this speed via radar. As Car A passes P, the car uniformly decelerates to the speed limit for 5 seconds and maintained the motion. Meanwhile, the police car begins to accelerate at the constant rate of 6 m/s2 until a velocity of 160 kph is achieved, and that speed is maintained. Determine the deceleration of car A to reach the speed limit,What is the distance traveled by the police to overtake car A, How long did it take for the police officer to overtake car A?arrow_forward
- km hr Q3/ Vehicle A is moving at a constant velocity VA 120- at a location where the speed limit is 100 km/h. The police officer in vehicle P observes this speed via radar. At the moment when A passes P. the police car begins to accelerate at the constant rate of 5 until a speed of 140 km/hr is achieved, and that speed is then maintained. Determine the distance required for the police officer to overtake car A. TU- ENGINEERING COLLEGE- ALSHIRQAIarrow_forwardDue to East, Car A travels at an initial velocity of 10 km/hr then constantly increased in velocity, after 30 minutes it reached 50 km/hr and maintained the velocity for the rest of Car A's travel. For Car B, it has an initial velocity of 90 km/hr, after traveling for 20 minutes, the velocity gradually decelerates to a 60 km/hr, and then maintained the velocity of 60 km/hour for the rest of Car B's travel time. If Car B travels due East 15 minutes after Car A started, determine what distance from their starting point will car B overtake car A.arrow_forwardA car and a truck are both traveling at the constant speed of 35 mi/h; the car is 40 ft behind the truck. The driver of the car wants to pass the truck, i.e., he wishes to place his car at B , 40 ft in front of the truck, and then resume the speed of 35 mi/h. The maximum acceleration of the car is 5 ft/s2 and the maximum deceleration obtained by applying the brakes is 20 ft/s2. What is the shortest time in which the driver of the car can complete the passing operation if he does not at any time exceed a speed of 50 mi/h? Draw the v-t curve.arrow_forward
- A car moved on a horizontal path from rest at constant acceleration from point A until it reached its maximum speed when passing by At point b it took 4 seconds, and after point B it continued its movement but at a slowdown of -3 m / s2 until it stopped at c Categorical The idling distance of 13.5 m. Find: 1. The distance the car traveled while accelerating from a to b 2. The car's rate of acceleration (acceleration) 3. The car's maximum speed from point b 4. The time the car took when slowing down from b to carrow_forward= Train A is traveling at a constant speed VÀ 34 mi/hr while car B travels in a straight line along the road as shown at a constant speed VB. A conductor C in the train begins to walk to the rear of the train car at a constant speed of 4 ft/sec relative to the train. If the conductor perceives car B to move directly westward at 18 ft/sec, how fast is the car traveling? y T C UB B Answer: VB = mi/hr e-Narrow_forward6. A motorcyclist at A is traveling at 60 ft/s when he wishes to pass the truck T which is traveling at a constant speed of 60 ft/s. To do so the motorcyclist accelerates at a = 6 ft/s? until reaching a maximum speed of If he then maintains this speed, determine the time needed for him to reach a point located 100 ft in front of the truck. Draw the v-t and s-t graphs for the motorcycle during this time. (Vm)ı = 60 ft/s (em)2 = 85 ft/s , = 60 ft/s -40 ft--55 ft- 100 ftarrow_forward
- Incorrect Car A is traveling at a location where the speed limit is 100 km/h. The police officer in car P observes this speed via radar. The driver of car A is traveling at VA = 127 km/h as it passes P, but over the next 5.9 seconds, the car uniformly decelerates to the speed limit of 100 km/h, and after that the speed limit is maintained. At the moment when A passes P, the police car begins to accelerate at the constant rate of 4.9 m/s² until a speed of 154 km/h is achieved, and that speed is then maintained. Determine the distance s required for the police officer to overtake car A. A Answer: s= -DA 186.73 P marrow_forwardCar A is traveling at a location where the speed limit is 100 km/h. The police officer in car P observes this speed via radar. The driver of car A is traveling at va = 128 km/h as it passes P, but over the next 4.3 seconds, the car uniformly decelerates to the speed limit of 100 km/h, and after that the speed limit is maintained. At the moment when A passes P, the police car begins to accelerate at the constant rate of 4.5 m/s? until a speed of 157 km/h is achieved, and that speed is then maintained. Determine the distance s required for the police officer to overtake car A. VA Answer: s = iarrow_forwardQ16. As shown in the image below, the football player at A throws a football C with a velocity of VA = 19 m/s in the direction shown with = 60°. Determine the constant speed at which the player at B must run so that he can catch the football at the same elevation at which it was thrown. Player B is at d = 17 m away from A when A starts to throw the football. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper Sl unit. Take g = 9.81 m/s². V Answer: A Ro darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY