
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
8th Edition
ISBN: 9781259676512
Author: Kenneth H Rosen
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.2, Problem 43E
To determine
How many children does the root of the game tree forcheckers have? How many grandchildren does it have?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
please show all the work
Questions
An insurance company's cumulative incurred claims for the last 5 accident years are given
in the following table:
Development Year
Accident Year 0
2018
1 2 3 4
245 267 274 289 292
2019
255 276 288 294
2020
265 283 292
2021
263 278
2022
271
It can be assumed that claims are fully run off after 4 years. The premiums received for
each year are:
Accident Year Premium
2018
306
2019
312
2020
318
2021
326
2022
330
You do not need to make any allowance for inflation.
1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method.
(b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method.
2. Comment on the differences in the reserves produced by the methods in Part 1.
A population that is uniformly distributed between a=0and b=10 is given in sample sizes
50( ),
100( ),
250( ),
and
500( ).
Find the sample mean and the sample standard deviations for the given data. Compare your results to the average of means for a sample of size 10, and use the empirical rules to analyze the sampling error. For each sample, also find the standard error of the mean using formula given below.
Standard Error of the
Mean =sigma/Root
Complete the following table with the results from the sampling experiment.
(Round to four decimal places as needed.)
Sample Size
Average of 8 Sample Means
Standard Deviation of 8 Sample Means
Standard Error
50
100
250
500
Chapter 11 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Ch. 11.1 - Prob. 1ECh. 11.1 - Vhich of these graphs are trees?Ch. 11.1 - Prob. 3ECh. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Prob. 8ECh. 11.1 - Prob. 9ECh. 11.1 - Prob. 10E
Ch. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - Let G he a simple graph with n vertices. Show that...Ch. 11.1 - Prob. 16ECh. 11.1 - Prob. 17ECh. 11.1 - Prob. 18ECh. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - A chain letter starts when a person sends a letter...Ch. 11.1 - A chain letter starts with a person sending a...Ch. 11.1 - Prob. 24ECh. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Prob. 28ECh. 11.1 - Prob. 29ECh. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Letnbe a power of 2. Show thatnnumbers can be...Ch. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Draw the first seven rooted Fibonacci trees.Ch. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Show that the average depth of a leaf in a binary...Ch. 11.2 - Build a binary search tree for the...Ch. 11.2 - Build a binary search tree for the words oenology,...Ch. 11.2 - How many comparisons are needed to locate or to...Ch. 11.2 - How many comparisons are needed to locate or to...Ch. 11.2 - Using alphabetical order, construct a binary...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - How many weighings of a balance scale are needed...Ch. 11.2 - One of four coins may be counterfeit. If it is...Ch. 11.2 - Find the least number of comparisons needed to...Ch. 11.2 - Prob. 12ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 15ECh. 11.2 - Prob. 16ECh. 11.2 - Prob. 17ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 21ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 23ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 25ECh. 11.2 - The tournament sort is a sorting algorithm that...Ch. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Suppose thatmis a positive integer with m>2An...Ch. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Suppose that m is a positive integer withm= 2. An...Ch. 11.2 - Suppose thatmis a positive integer withm= 2....Ch. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 36ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 39ECh. 11.2 - Suppose that m is a positive integer withm= 2. An...Ch. 11.2 - Prob. 41ECh. 11.2 - Suppose that m is a positive integer with m>2 An...Ch. 11.2 - Prob. 43ECh. 11.2 - Prob. 44ECh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Suppose that the vertex with the largest address...Ch. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - Prob. 13ECh. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Prob. 16ECh. 11.3 - Prob. 17ECh. 11.3 - a) Represent the compound propositionsandusing...Ch. 11.3 - a) Represent(AB)(A(BA))using an ordered rooted...Ch. 11.3 - In how many ways can the stringbe fully...Ch. 11.3 - In how many ways can the stringbe fully...Ch. 11.3 - Draw the ordered rooted tree corresponding to each...Ch. 11.3 - What is the value of each of these prefix...Ch. 11.3 - What is the value of each of these postfix...Ch. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Show that any well-formed formula in prefix...Ch. 11.3 - Prob. 32ECh. 11.3 - Prob. 33ECh. 11.3 - Prob. 34ECh. 11.4 - How many edges must be removed from a connected...Ch. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Prob. 18ECh. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Describe the tree produced by breadth-first search...Ch. 11.4 - Prob. 23ECh. 11.4 - Explain how breadth-first search or depth-first...Ch. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Prob. 27ECh. 11.4 - Use backtracking to find a subset, if it exists,...Ch. 11.4 - Explain how backtracking can be used to find a...Ch. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - A spanning forest of a graphGis a forest that...Ch. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - A spanning forest of a graphGis a forest that...Ch. 11.4 - Prob. 37ECh. 11.4 - Prob. 38ECh. 11.4 - Prob. 39ECh. 11.4 - Prob. 40ECh. 11.4 - Prob. 41ECh. 11.4 - Prob. 42ECh. 11.4 - Prob. 43ECh. 11.4 - Prob. 44ECh. 11.4 - Prob. 45ECh. 11.4 - Prob. 46ECh. 11.4 - Prob. 47ECh. 11.4 - Prob. 48ECh. 11.4 - Prob. 49ECh. 11.4 - Prob. 50ECh. 11.4 - Prob. 51ECh. 11.4 - Prob. 52ECh. 11.4 - Prob. 53ECh. 11.4 - Prob. 54ECh. 11.4 - Prob. 55ECh. 11.4 - Prob. 56ECh. 11.4 - Prob. 57ECh. 11.4 - Prob. 58ECh. 11.4 - Prob. 59ECh. 11.4 - Prob. 60ECh. 11.4 - Prob. 61ECh. 11.5 - The roads represented by this graph are all...Ch. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - Prob. 10ECh. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - Prob. 15ECh. 11.5 - Prob. 16ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - Prob. 20ECh. 11.5 - Prob. 21ECh. 11.5 - Prob. 22ECh. 11.5 - Express the algorithm devised in Exercise 22 in...Ch. 11.5 - Prob. 24ECh. 11.5 - Prob. 25ECh. 11.5 - Prob. 26ECh. 11.5 - Prob. 27ECh. 11.5 - Prob. 28ECh. 11.5 - Prob. 29ECh. 11.5 - Prob. 30ECh. 11.5 - Prob. 31ECh. 11.5 - Prob. 32ECh. 11.5 - Prob. 33ECh. 11.5 - Prob. 34ECh. 11.5 - Prob. 35ECh. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - Prob. 5RQCh. 11 - Prob. 6RQCh. 11 - Prob. 7RQCh. 11 - a) What is a binary search tree? b) Describe an...Ch. 11 - Prob. 9RQCh. 11 - Prob. 10RQCh. 11 - a) Explain how to use preorder, inorder, and...Ch. 11 - Show that the number of comparisons used by a...Ch. 11 - a) Describe the Huffman coding algorithm for...Ch. 11 - Draw the game tree for nim if the starting...Ch. 11 - Prob. 15RQCh. 11 - Prob. 16RQCh. 11 - a) Explain how backtracking can be used to...Ch. 11 - Prob. 18RQCh. 11 - Prob. 19RQCh. 11 - Show that a simple graph is a tree if and Only if...Ch. 11 - Prob. 2SECh. 11 - Prob. 3SECh. 11 - Prob. 4SECh. 11 - Prob. 5SECh. 11 - Prob. 6SECh. 11 - Prob. 7SECh. 11 - Prob. 8SECh. 11 - Prob. 9SECh. 11 - Prob. 10SECh. 11 - Prob. 11SECh. 11 - Prob. 12SECh. 11 - Prob. 13SECh. 11 - Prob. 14SECh. 11 - Prob. 15SECh. 11 - Prob. 16SECh. 11 - Prob. 17SECh. 11 - Prob. 18SECh. 11 - Prob. 19SECh. 11 - Prob. 20SECh. 11 - Prob. 21SECh. 11 - Prob. 22SECh. 11 - Prob. 23SECh. 11 - The listing of the vertices of an ordered rooted...Ch. 11 - The listing of the vertices of an ordered rooted...Ch. 11 - Prob. 26SECh. 11 - Prob. 27SECh. 11 - Prob. 28SECh. 11 - Prob. 29SECh. 11 - Show that if every circuit not passing through any...Ch. 11 - Prob. 31SECh. 11 - Prob. 32SECh. 11 - Prob. 33SECh. 11 - Prob. 34SECh. 11 - Prob. 35SECh. 11 - Prob. 36SECh. 11 - Prob. 37SECh. 11 - Prob. 38SECh. 11 - Prob. 39SECh. 11 - Prob. 40SECh. 11 - Prob. 41SECh. 11 - Prob. 42SECh. 11 - Prob. 43SECh. 11 - Prob. 44SECh. 11 - Prob. 45SECh. 11 - Show that a directed graphG= (V,E) has an...Ch. 11 - In this exercise we will develop an algorithm to...Ch. 11 - Prob. 1CPCh. 11 - Prob. 2CPCh. 11 - Prob. 3CPCh. 11 - Prob. 4CPCh. 11 - Prob. 5CPCh. 11 - Prob. 6CPCh. 11 - Prob. 7CPCh. 11 - Given an arithmetic expression in prefix form,...Ch. 11 - Prob. 9CPCh. 11 - Given the frequency of symbols, use Huffman coding...Ch. 11 - Given an initial position in the game of nim,...Ch. 11 - Prob. 12CPCh. 11 - Prob. 13CPCh. 11 - Prob. 14CPCh. 11 - Prob. 15CPCh. 11 - Prob. 16CPCh. 11 - Prob. 17CPCh. 11 - Prob. 18CPCh. 11 - Prob. 1CAECh. 11 - Prob. 2CAECh. 11 - Prob. 3CAECh. 11 - Prob. 4CAECh. 11 - Prob. 5CAECh. 11 - Prob. 6CAECh. 11 - Prob. 7CAECh. 11 - Prob. 8CAECh. 11 - Prob. 1WPCh. 11 - Prob. 2WPCh. 11 - Prob. 3WPCh. 11 - DefineAVL-trees(sometimes also known...Ch. 11 - Prob. 5WPCh. 11 - Prob. 6WPCh. 11 - Prob. 7WPCh. 11 - Prob. 8WPCh. 11 - Prob. 9WPCh. 11 - Prob. 10WPCh. 11 - Discuss the algorithms used in IP multicasting to...Ch. 11 - Prob. 12WPCh. 11 - Describe an algorithm based on depth-first search...Ch. 11 - Prob. 14WPCh. 11 - Prob. 15WPCh. 11 - Prob. 16WPCh. 11 - Prob. 17WPCh. 11 - Prob. 18WP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- survey of 5050 young professionals found that they spent an average of $20.5620.56 when dining out, with a standard deviation of $11.4111.41. Can you conclude statistically that the population mean is greater than $2323? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is left bracket nothing comma nothing right bracketenter your response here, enter your response here. As $2323 is ▼ of the confidence interval, we ▼ can cannot conclude that the population mean is greater than $2323. (Use ascending order. Round to four decimal places as needed.)arrow_forward1. vector projection. Assume, ER1001 and you know the following: ||||=4, 7=-0.5.7. For each of the following, explicitly compute the value. འབ (a) (b) (c) (d) answer. Explicitly compute ||y7||. Explain your answer. Explicitly compute the cosine similarity of and y. Explain your Explicitly compute (x, y). Explain your answer. Find the projection of onto y and the projection of onto .arrow_forwardA survey of 250250 young professionals found that two dash thirdstwo-thirds of them use their cell phones primarily for e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for e-mail is less than 0.720.72? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is left bracket nothing comma nothing right bracket0.60820.6082, 0.72510.7251. As 0.720.72 is within the limits of the confidence interval, we cannot conclude that the population proportion is less than 0.720.72. (Use ascending order. Round to four decimal places as needed.)arrow_forward
- The numbered disks shown are placed in a box and one disk is selected at random. Find the probability of selecting a 4, given that a green disk is selected. Find the probability of selecting a 4, given that a green disk is selected. (Type an integer or a simplified fraction.) green blue green green green blue green bluearrow_forwardPls help ASAParrow_forwardThe table shows the distribution, by age, of a random sample of 3160 moviegoers ages 12-74. If one moviegoer is randomly selected from this population, find the probability, expressed as a simplified fraction, that the moviegoer is not in the 65-74 age range. The probability is (Type an integer or a simplified fraction.) Age Distribution of Moviegoers Ages Number 12-24 1090 25-44 860 45-64 890 65-74 320arrow_forward
- Use the spinner shown. It is equally probable that the pointer will land on any one of the six regions. If the pointer lands on a borderline, spin again. If the pointer is spun twice, find the probability that it will land on yellow and then yellow. Find the probability that the spinner will land on yellow and then yellow. The probability is (Type an integer or a simplified fraction.) Green Red Gray Red Blue Yellow Q ☑arrow_forwardUse the spinner shown to answer the question. Assume that it is equally probable that the pointer will land on any one of the colored regions. If the pointer lands on a borderline, spin again. If the spinner is spun once, find the probability that the pointer lands in a region that is red or green. The probability that the pointer lands in a region that is red or green is (Type an integer or a simplified fraction.) green red green red yellow redarrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- A survey of 250 young professionals found that two-thirds of them use their cell phones primarily for e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for e-mail is less than 0.72? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is [ ], [ ] As 0.72 is ▼ above the upper limit within the limits below the lower limit of the confidence interval, we ▼ can cannot conclude that the population proportion is less than 0.72. (Use ascending order. Round to four decimal places as needed.)arrow_forward2. Answer the following questions using vectors u and v. --0-0-0 = find the the cosine similarity and the angle between u and v. འརྒྱ (a) (b) find the scalar projection of u onto v. (c) find the projection of u onto v. (d) (e) (f) find the scalar projection of onto u. find the projection of u onto u. find the projection of u onto and the projection of onto . (Hint: find the inner product and verify the orthogonality)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
12. Searching and Sorting; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=6LOwPhPDwVc;License: Standard YouTube License, CC-BY
Algorithms and Data Structures - Full Course for Beginners from Treehouse; Author: freeCodeCamp.org;https://www.youtube.com/watch?v=8hly31xKli0;License: Standard Youtube License