(a)
To define:
A tree.
Explanation of Solution
Definition: A tree is a connected undirected graph with no simple circuits. Because a tree cannot have a simple circuit, a tree cannot contain multiple edges or loops. Therefore any tree must be a simple graph.
An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.
Example:
(b)
To define:
A forest.
Explanation of Solution
Definition: A forest is an undirected graph, all of whose connected components are trees.
i.e. the graph consists of a disjoint union of trees.
A forest is a disjoint union of trees, or equivalently anacyclic graph that is not necessarily connected.
Example:
An empty graph, a single tree and the discrete graph on a set of vertices are examples of forest tree.
Want to see more full solutions like this?
Chapter 11 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
- Can you explain this statement below in layman's terms? Secondary Analysis with Generalized Linear Mixed Model with clustering for Hospital Center and ICUvs Ward EnrolmentIn a secondary adjusted analysis we used generalized linear mixed models with random effects forcenter (a stratification variable in the primary analyses). In this analysis, the relative risk for the primaryoutcome of 90-day mortality for 7 versus 14 days of antibiotics was 0.90 (95% Confidence Interval [CI]0.78, 1.05).arrow_forward2 Solve for (x, y, z) in the set of linear, inhomogeneous equations: 2x+5y + z = 2 x+y+2x=1 2+52=3.arrow_forwardProve by induction that for any natural number N, 1 N Σ42 = 6 N(N + 1)(2N + 1). k=1 Indicate clearly where you use the inductive hypothesis.arrow_forward
- 2x-y=1 x+2y=7 y = 2x + 2 3x + 2y = 4 x+3y=0 x-3y=6 8 4x-2y=7 x + 3y = 7 10 2x-2y=5 2x + 3y+ 1 = 0 Ke int lin Chapter 14arrow_forward(a) (b) Let A, B be disjoint subsets of a set X. Show that AC Bc. Use proof by contradiction to show that for any a, b = R, if a is rational and b is irrational then ba is irrational.arrow_forward(d) Consider the sequences (xn), (yn) defined recursively as follows: Xn+1 = xn2yn, i. ii. n, Yn+1=Yn2xn for n ≥ 1, x1 = 1, y₁ = 2. Calculate x2, y2 and x3, Y3. - Show using induction or otherwise that for any natural number - Xn+Yni = (1+2i)". Hence or otherwise, show that for any natural number n, iii. Zn = (V5)” cos(n arctan2), n = (V5)” sin(n arctan 2).arrow_forward
- 2. (a) For each of the following functions, decide whether it is injective, and whether it is surjective. Justify your answers. i. f: Z → 22 Z 3z +1 ii. 9: C→ 22 Re(z) + Im(z)arrow_forwardNot use ai pleasearrow_forward2. Given f(0) = (2 cos 0)² - 3sin²0. 1 a. Show that f(0) = ½ + ½ 7 + - cos cos 20. 2 2 b. Hence, find the exact value of √² 0 ƒ (0) do.arrow_forward
- 2. Given f(0) = (2 cos 0)² - 3sin²0. 1 a. Show that f(0) = ½ + ½ 7 +-cos cos 20. 2 2 b. Hence, find the exact value of √ ƒ (0) d0.arrow_forwardNot use ai pleasearrow_forwardIn a crossover trial comparing a new drug to a standard, π denotes the probabilitythat the new one is judged better. It is desired to estimate π and test H0 : π = 0.5against H1 : π = 0.5. In 20 independent observations, the new drug is better eachtime.(a) Find and plot the likelihood function. Give the ML estimate of π (Hint: youmay use the plot function in R)arrow_forward
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,