CENGEL'S 9TH EDITION OF THERMODYNAMICS:
9th Edition
ISBN: 9781260917055
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.11, Problem 32P
Consider an alcohol and a mercury thermometer that read exactly 0°C at the ice point and 100°C at the steam point. The distance between the two points is divided into 100 equal parts in both thermometers. Do you think these thermometers will give exactly the same reading at a temperature of say, 60°C? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A closed vessel contains air at a pressure of 10 Kpag and temperature of 20 0C. Find the final gauge pressure if the air is heated at constant volume to 40 0C. Take the atmospheric pressure as 759 mm Hg. Show complete solution and the final answer should be rounded to 4 decimal places
The figure shows a 50.-kg frictionless cylindrical piston that floats on 20 mol of compressed air at 45.°C. How far does the piston move if the temperature is increased to 600 °F? (This is an Isobaric process and the piston is at sea level under an atmospheric pressure of 101.3 kPa). The values given in the figure are: 50. Kg, 30.°C, and 10. cm.
The warmest temperature ever measured in the United States is
134 °F on July 10, 1913, in Death Valley, California. Convert that
temperature to °C and K.
Chapter 1 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - One of the most amusing things a person can...Ch. 1.11 - An office worker claims that a cup of cold coffee...Ch. 1.11 - What is the difference between the classical and...Ch. 1.11 - Explain why the light-year has the dimension of...Ch. 1.11 - What is the difference between pound-mass and...Ch. 1.11 - What is the net force acting on a car cruising at...Ch. 1.11 - What is the weight, in N, of an object with a mass...Ch. 1.11 - If the mass of an object is 10 lbm, what is its...Ch. 1.11 - The acceleration of high-speed aircraft is...
Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - A 3-kg plastic tank that has a volume of 0.2 m3 is...Ch. 1.11 - A 2-kg rock is thrown upward with a force of 200 N...Ch. 1.11 - Solve Prob. 113 using appropriate software. Print...Ch. 1.11 - A 4-kW resistance heater in a water heater runs...Ch. 1.11 - A 150-lbm astronaut took his bathroom scale (a...Ch. 1.11 - The gas tank of a car is filled with a nozzle that...Ch. 1.11 - How would you define a system to determine the...Ch. 1.11 - A large fraction of the thermal energy generated...Ch. 1.11 - A can of soft drink at room temperature is put...Ch. 1.11 - How would you define a system to determine the...Ch. 1.11 - How would you describe the state of the air in the...Ch. 1.11 - What is the difference between intensive and...Ch. 1.11 - The specific weight of a system is defined as the...Ch. 1.11 - Is the number of moles of a substance contained in...Ch. 1.11 - Is the state of the air in an isolated room...Ch. 1.11 - What is a quasi-equilibrium process? What is its...Ch. 1.11 - Define the isothermal, isobaric, and isochoric...Ch. 1.11 - What is specific gravity? How is it related to...Ch. 1.11 - What are the ordinary and absolute temperature...Ch. 1.11 - Consider an alcohol and a mercury thermometer that...Ch. 1.11 - Consider two dosed systems A and B. System A...Ch. 1.11 - Consider a system whose temperature is 18C....Ch. 1.11 - Steam enters a heat exchanger at 300 K. What is...Ch. 1.11 - The temperature of a system rises by 130C during a...Ch. 1.11 - The temperature of a system drops by 45F during a...Ch. 1.11 - The temperature of the lubricating oil in an...Ch. 1.11 - Heated air is at 150C. What is the temperature of...Ch. 1.11 - What is the difference between gage pressure and...Ch. 1.11 - Explain why some people experience nose bleeding...Ch. 1.11 - A health magazine reported that physicians...Ch. 1.11 - Someone claims that the absolute pressure in a...Ch. 1.11 - Consider two identical fans, one at sea level and...Ch. 1.11 - The absolute pressure in a compressed air tank is...Ch. 1.11 - A manometer measures a pressure difference as 40...Ch. 1.11 - A vacuum gage connected to a chambee reads 35 kPa...Ch. 1.11 - The maximum safe air pressure of a tire is...Ch. 1.11 - A pressure gage connected to a tank reads 50 psi...Ch. 1.11 - A pressure gage connected to a tank reads 500 kPa...Ch. 1.11 - A 200-pound man has a total foot imprint area of...Ch. 1.11 - The gage pressure in a liquid at a depth of 3 m is...Ch. 1.11 - The absolute pressure in water at a depth of 9 m...Ch. 1.11 - Consider a 1.75-m-tall man standing vertically in...Ch. 1.11 - The barometer of a mountain hiker reads 750 mbars...Ch. 1.11 - The basic barometer can be used to measure the...Ch. 1.11 - A gas is contained in a vertical, frictionless...Ch. 1.11 - Reconsider Prob. 158. Using appropriate software,...Ch. 1.11 - The piston of a vertical piston-cylinder device...Ch. 1.11 - Both a gage and a manometer are attached to a gas...Ch. 1.11 - Reconsider Prob. 161. Using appropriate software,...Ch. 1.11 - A manometer containing oil ( = 850 kg/m3) is...Ch. 1.11 - A manometer is used to measure the air pressure in...Ch. 1.11 - A mercury manometer ( = 13.600 kg/m3) is connected...Ch. 1.11 - Repeat Prob. 165 for a differential mercury height...Ch. 1.11 - The pressure in a natural gas pipeline is measured...Ch. 1.11 - Repeat Prob. 167E by replacing air with oil with a...Ch. 1.11 - Blood pressure is usually measure by wrapping a...Ch. 1.11 - The maximum blood pressure in the upper arm of a...Ch. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Consider a double-fluid manometer attached to an...Ch. 1.11 - Calculate the absolute pressure. P1, of the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - The hydraulic lift in a car repair shop has an...Ch. 1.11 - Consider the system shown in Fig. 177. If a change...Ch. 1.11 - The gage pressure of the air in the tank shown in...Ch. 1.11 - Repeat Prob. 178 for a gage pressure of 40 kPa.Ch. 1.11 - What is the value of the engineering software...Ch. 1.11 - Determine a positive real root of this equation...Ch. 1.11 - Solve this system of two equations with two...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - A man goes to a traditional market to buy a steak...Ch. 1.11 - What is the weight of a 1-kg substance in N, kN,...Ch. 1.11 - The pressure in a steam boiler is given to be 92...Ch. 1.11 - A hydraulic lift is to be used to lift a 1900-kg...Ch. 1.11 - The average atmosphere pressure on earth is...Ch. 1.11 - Hyperthermia of 5C (i.e., 5C rise above the normal...Ch. 1.11 - The boiling temperature of water decreases by...Ch. 1.11 - A house is losing heat at a rate of 1800 kJ/h per...Ch. 1.11 - The average body temperature of a person rises by...Ch. 1.11 - The average temperature of the atmosphere in the...Ch. 1.11 - A vertical, frictionless pistoncylinder device...Ch. 1.11 - A vertical pistoncylinder device contains a gas at...Ch. 1.11 - The force generated by a spring is given by F =...Ch. 1.11 - An air-conditioning system requires a 35-m-long...Ch. 1.11 - Balloons are often filled with helium gas because...Ch. 1.11 - Reconsider Prob. 1101. Using appropriate software,...Ch. 1.11 - Determine the maximum amount of load, in kg, the...Ch. 1.11 - The lower half of a 6-m-high cylindrical container...Ch. 1.11 - A pressure cooker cooks a lot faster than an...Ch. 1.11 - The pilot of an airplane reads the altitude 6400 m...Ch. 1.11 - A glass tube is attached to a water pipe, as shown...Ch. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - A water pipe is connected to a double-U manometer...Ch. 1.11 - A gasoline line is connected to a pressure gage...Ch. 1.11 - Repeat Prob. 1110 for a pressure gage reading of...Ch. 1.11 - When measuring small pressure differences with a...Ch. 1.11 - Pressure transducers are commonly used to measure...Ch. 1.11 - Consider the flow of air through a wind turbine...Ch. 1.11 - The drag force exerted on a car by air depends on...Ch. 1.11 - It is well known that cold air feels much colder...Ch. 1.11 - Reconsider Prob. 1116E. Using appropriate...Ch. 1.11 - During a heating process, the temperature of an...Ch. 1.11 - An apple loses 3.6 kJ of heat as it cools per C...Ch. 1.11 - At sea level, the weight of 1 kg mass in SI units...Ch. 1.11 - Consider a fish swimming 5 m below the free...Ch. 1.11 - The atmospheric pressures at the top and the...Ch. 1.11 - Consider a 2.5-m-deep swimming pool. The pressure...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the velocity of block D if end A of the rope is pulled down with a speed of vA = 3 m/s.
Engineering Mechanics: Dynamics (14th Edition)
A biological fluid moves at a flow rate of m=0.02kg/s through a coiled, thin-walled, 5-mm-diameter tube submerg...
Fundamentals of Heat and Mass Transfer
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
Heat and Mass Transfer: Fundamentals and Applications
Comprehension Check 7-14
The power absorbed by a resistor can be given by P = I2R, where P is power in units of...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
3.3 It is known that a vertical force of 200 lb is required to remove the nail at C from the board. As the nail...
Vector Mechanics for Engineers: Statics
A pipe flowing light oil has a manometer attached, as shown in Fig, P1.52. What is the absolute pressure in pip...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A compressed air tank is designed to contain 50 standard cubic feet of air when Ölled to a gaugepressure of 200 atm at an ambient temperature of 70 F. Calculate the interior volume of thetank. One standard cubic foot of air occupies one cubic foot at standard temperature and pressure(T = 59 F and p = 2116 lb/ft2).arrow_forwardA volume of 45000 mL of air is measured at a pressure of 4.92 in Hg gage and a temperature of 21°C. What is the volume in liters at 190 mm Hg vac. and 32°F? Atmospheric pressure is 101 kPa.arrow_forwardConsider a thermometer in Fahrenheit scale and Celsius scale, both thermometers are immersed in a certain fluid. (a) If the numerical readings are identical on both scales, what is the absolute temperature of the fluid? (b) What is the fluid temperature if the Fahrenheit reading is numerically thrice the of the Celsius Reading?arrow_forward
- Consider the low speed flight of the space shuttle as it is nearing a landing. If the air pressure and temperature at the nose of the shuttle are 1.15 atm and 207 K, respectively what is its specific volume in m^3/kg? Note: R=287 j/kg*k With solution pleasearrow_forward1.3 kg of air are held at 6.89 kpa and 38 °C. Given that R_air = 88.89 J/kg k, what is the volume of the container?arrow_forwardFor a certain ideal gas R = 25.8 ft.lb /lb °R and k =1.09a. What are the values of cp and cv?b. What mass of this gas would occupy a volume of 15 cu ft at 75 psia and 80 °F?c. If 30 Btu are transferred to this gas at constant volume in (b), what are the resultingtemperature and pressure? include the diagramarrow_forward
- A cylinder of 0.9 m3 in volume contains air at 0℃ and 39.24 N/cm2 absolute pressure. The air is then compressed to 0.45 m3. Find: a. The pressure inside the cylinder assuming isothermal process b. The pressure and temperature assuming adiabatic process. Take k = 1.40arrow_forwardI'm Confused with two things One is about the Formula ,Which one should i use E=mcp∆T OR E=mcv∆T. Another thing is Conversion of unit (Whether I should Take ∆T= 4°F or in °C ) Please clarify it in your solution with correct answer ,Have less time.arrow_forwardIf 100 ft3 of atmospheric air at zero Fahrenheit temperature are compressed to a volume of 1 ft3 at a temperature of 25 0F, what will be the pressure of the air in psi?arrow_forward
- A perfect gas has a value of R=58.78 ft-lbf/lbm-R and k=1.27. If 25 BTU are added to 10lbs of the gas at constant volume when initial temperature is 90°F, find the final temperature in °F.arrow_forwardA volume of 25 in of air is measured at a pressure of 30 in HG absolute and a temperature of 70°F. What is the volume in cm³ at 10 psig and 2°C? O 286 RO O 6ంఈ.22 O 228.60 682.20arrow_forwardConsider a column of a planet's atmosphere. The planet's atmosphere is a compressible ideal gas at rest that obeys the polytropic relation Po %3D 3/2 Po 3/2 where pis pressure and pis density. Here, p, and P, are the values of pressure and density, respectively, at the planet's surface. Take z (altitude) to be positive upward with z=0 at the surface, take R to be the gas constant for the planet's atmosphere, and take g to be the downward acceleration due to gravity. a) Starting from hydrostatic balance and the polytropic relation above, derive an expression for the pressure field, p(z), in terms of the given parameters. Leave all parameters except the polytropic index as algebraic. b) Derive an expression for the density field, p(z), in terms of the given parameters. Leave all parameters except the polytropic index as algebraic. c) Derive an expression for the temperature field, T(z), in terms of the given parameters. Leave all parameters except the polytropic index as algebraic.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY